已知抛物线与x轴交于a(6,0)B(-4分之5,0)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:51:26
已知抛物线y1=ax的平方+c与x轴交于点A,B,与y轴交于点C.抛物线y2与抛物线y1关于x轴对称,与y轴交于点D,若

选D若四边形ACBD是正方形那么就有CD=ABCO=AO=c即可以得到抛物线与x轴的交点为(c,0),(-c,0)将点代入y1=ax的平方+c可得到ac²﹢c=0ac﹙c﹢1﹚=0ac≠0∴

如图,已知抛物线x^2-ax+a+2与x轴交于A,B两点,与y轴交于点D(0,8),直线CD平行于x轴,叫抛物线与另一点

1、f(x)=x^2-ax+a+2,过D点f(0)=a+2=8a=62、f(x)=x^2-6x+8=8x=6C(6,8)f(x)=x^2-6x+8=0x=2,x=4A(2,0),B(4,0)PQ平行于

图 已知抛物线经过原点O和x轴上一点A 4 0 抛物线顶点为E 它的对称轴与x轴交于点D

①设抛物线的方程为Y=aX²+bX+c又该抛物线过点O(0,0)点A(4,0)所以c=0Y=a(x-2)²-4a直线y=2x-1过点B(-2,m)所以m=-5又点B在抛物线上,代入

如图,已知抛物线于X交于A(-1,0),E(3,0)两点,与Y轴交于点B(0,3).

y=-(x+1)*(x-3)D(1,4)不相似,AOB是直角三角形,DBE三边不构成直角

问一道函数题已知抛物线与x轴交于点A(-1,0),与y轴交于点C(0,3),对称轴方程是X=1.(1)求抛物线与X轴的另

(1)(1)∵抛物线与x轴交于点A(-1,0),对称轴方程是X=1∴抛物线与x轴交于另一点B(3,0)(2)设抛物线方程为y=-2p(x-1)平方+c又∵A(-1,0),C(0,3)∴p=1/2,c=

一道数学难题如图,已知抛物线y=ax2-2x+c于x轴交于A,B(3,0)两点,与Y轴交于(0,-3),直线L与抛物线交

每一点得点表我都算好了.y=ax平方-2x+c中在这里说了月y轴的焦点是(0,-3),所以c=-3y=ax平方-2x-3要是ax平方-2x-3=0a=1所以y=x平方-2x-3要是y=(x-1)平方-

如图所示,已知直线y=1 /2x与抛物线y=ax2+b(a≠0)交于A(-4,-2),B(6,3)两点.抛物线与y轴的交

令AB的中点为N,l为其中垂线(3)中AC为公共底,只须其上的高h=3H/4, 其中H为B与AC的距离其余见图

如图,已知抛物线y=x²+3x-4与x轴交于A,B两点,与y轴交于C点,直线y=2x+2与抛物线交于

(1)二者的底相同(DE),只需其上的高相等即可,即CP与DE平行。CP的斜率也是2,C(0,-4),CP的方程为y=2x-4(点斜式)y=2x-4=x²+3x-4x=-1(另一解x=0为点

已知抛物线y=1/2x^2+bx+c与y轴交于c,与x轴交于A、B.A(2,0)C(0,-1) (1)求抛物线解析式

这样的题目不画图,还有那么多公式,怎么说清楚.都手写过程给你了.不行就没办法了

已知抛物线y=x2+kx+2k-4,若抛物线与x轴交于A(x1,0),B(x2,0),与y轴交于点C(A为定点且点A在B

令y=0,有x2+kx+2k-4=0,此一元二次方程根的判别式△=k2-4•(2k-4)=k2-8k+16=(k-4)2,∵无论k为什么实数,(k-4)2≥0,方程x2+kx+2k-4=0都有解,即抛

:已知二次函数y=a(x的平方-6x+8)(a>0)的图像与x轴分别交于点A,B,与y轴交于点C,点D是抛物线的顶点

1.连接OO’因为O’关于线段AC对称所以OO’⊥AC,所以有k1×k2=-1y=a(x的平方-6x+8)=a(x-4)(x-2)所以A:(2,0),C:(0,8a)yAC=-4ax+8x-4a×kO

如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交抛物线于点E(2,6

(1)根据△ABE与△ABC的面积之比为3:2及E(2,6),可得C(0,4).∴D(0,2).由D(0,2)、E(2,6)可得直线AD所对应的函数关系式为y=2x+2.当y=0时,2x+2=0,解得

求:已知抛物线与x轴交于A,B两点,A在B的左侧,A坐标为(-1,0)与y轴交于点C(0,3)△ABC的面积为6

答案是3或三分之八,中间无需算出t的值,当△MNB∽△ACB时,对应边成比例就可算出BN的值=3,当△MNB∽△CAB时,BN=三分之八再问:当△MNB∽△CAB时,BN=三分之八,怎么算的再答:

已知抛物线与x轴交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3).(1)求抛物线的表达式;(2)设抛物线顶

(1)设抛物线的解析式为:y=a(x+1)(x-3),则有:a(0+1)(0-3)=3,a=-1;∴抛物线的解析式为:y=-x2+2x+3;(2)由(1)知:y=x2-2x+3=-(x-1)2+4,即

已知抛物线y=ax^2+bx+c经过点(4,-6),(-2,0),a>0,与x轴的交于A,B两点,与y轴交于点C,求△A

因抛物线y=ax^2+bx+c经过点(4,-6),(-2,0),故16a+4b+c=-6,4a-2b+c=0,解得b=-(2a+1),c=-(8a+2)①S△ABC=(1/2)|AB||c|=(4a+

已知:抛物线y=ax2+bx+c与x轴交于点A(k,0)(k

(1)设抛物线解析式为y=a(x-k)(x-3)又OC=3OA,即x=0时,y=-3k,(k0(不合题意,舍去)n=-k时,代入(1)可知t=-2k^2-3k.(2)E点坐标为(-k,-3k+t)(3

已知抛物线与x州交于A(-1,0)B(3,0)与Y轴交于点C(0,3) 求抛物线的解析式

设y=ax^2+b+c,把A,B,C三点的坐标代入得a-b+c=09a+3b+c=0c=3解得a=-1,b=2,c=3,则抛物线的解析式为y=-x^2+2x+3存在符合条件的P点用顶点坐标公式可以求出

已知:抛物线C1:y=2x2+bx+6与抛物线C2关于y轴对称,抛物线C1与x轴分别交于点A(-3,0),B(m,0),

解题思路:当P点与C点重合时,C2与PQ有且只有一个交点,当D与P重合时,PQ与C2有两个交点,可得当1≤t解题过程: