已知数列an是等比数列,且满足a2a5
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 16:34:14
设公比为q2a1+a3=3a22a1+a1q²=3a1qq²-3q+2=0(q-1)(q-2)=0q=1或q=2a3+2是a2、a4的等差中项2(a3+2)=a2+a42(a1q&
lgan=3n+5an=10^(3n+5)a(n+1)=10^(3n+8)a(n+1)/an=10^3所以an是等比数列
a(n+1)+1/2=3an+1+1/2=3(an+1/2)a1+1/2=1所以{an+1/2}是以1为首相,3为公比的等比数列an+1/2=3^(n-1)an=3^(n-1)-1/2
a2+a4=2*(a3+2),代入第一个式子,a3=8a2+a4=20a3/q+a3*q=20q=1/2或21/2舍a1=2an=2^n
a1*p=a2a1*p^3=a4,a1*p-a1=a1*p^3-a1*Pp-1=p^(p^2-1);(p-1)(p*(p+1)-1)=0,p=1,或p^2+p-1=0,p=(-1+√5)/2,p=(-
a1,a2,a4成等差数列2a2=a1+a4即2a1*q=a1+a1q^3a1不为0所以:2q=1+q^3q^3-2q+1=0q^3-q^2+q^2-2q+1=0q^2*(q-1)+(q-1)^2=0
a1,a2,a4成等差数列所以2a2=a1+a4{an}是等比数列a2=a1qa4=a1q^3所以2×a1q=a1+a1q^3即:q^3-2q+1=0(q-1)(q^2+q-1)=0q=1或q=(-1
a1,a2,a4成等差数列所以2a2=a1+a4{an}是等比数列a2=a1qa4=a1q^3所以2×a1q=a1+a1q^3即:q^3-2q+1=0(q-1)(q^2+q-1)=0q=1或q=(-1
an=2^n步骤:等比数列{an},=>an=a1*q^(n-1),(a1、q不为0)=>a2=a1q,a3=a1q^2,a4=a1q^3,2a1+a3=3a2=>2a1+a1q^2=3a1q,=>q
1.bn/b(n-1)=3[an-a(n-1)]=q所以an-a(n-1)=log(3)q2.a2=13a8=1d=-2an=17-2n3.n8Tn=-[a1+.an]+2[a1+.+a8=n^2-1
lgAn-lgA(n-1)=lg[An/A(n-1)]=3n+5-3(n-1)-5=3所以An/A(n-1)=1000所以是等比数列再问:谢了袄哥们再答:不谢,要互相帮助
设公比为q,数列是递增数列,q>1数列是等比数列,a1a5=a2a4=729,又a1+a5=246,a1、a5是方程x²-246x+729=0的两根.(x-3)(x-243)=0x=3或x=
题目好像有问题“{an}满足a2+a3+a4+28”?会不会是a2+a3+a4=28如果这样,那解题如下:2(a3+2)=a2+a4a2+a4=28-a3代入解得:a3=8所以,8/q+8q=20解得
Sn=2n-an,(1)S(n+1)=2*(n+1)-a(n+1)(2)(2)-(1)得:a(n+1)=2-a(n+1)+an.即:2*a(n+1)=2+an.变形:2*[a(n+1)-2]=an-2
∵f(x)=3x+2,数列{an}满足:a1≠-1且an+1=f(an)(n∈N*),∴an+1=f(an)=3an+2,…①又∵数列{an+c}是等比数列,∴an+1+can+c=k,整理,得an+
电脑打字太麻烦思路应该是对的~
1.证:Sn=(3an-n)/2Sn-1=[3a(n-1)-(n-1)]/2an=Sn-Sn-1=[3an-3a(n-1)-1]/2an=3a(n-1)+1an+1/2=3a(n-1)+3/2=3[a
类比等比数列的性质,可以得到等差数列的一个性质是:若数列{an}是等差数列,则数列bn=a1+a2+…+ann也是等差数列.证明:设等差数列{an}的公差为d,则bn=a1+a2+…+ann=na1+
n=b1.q^(n-1)bn=an-3nan=bn+3n=b1.q^(n-1)+3nSn=a1+a2+...+an=b1(q^n-1)/(q-1)+3n(n+1)/2
设a2=a,a3=aq,a4=aq^2,a5=aq^3,a6=aq^4a2*a4+2a3*a5+a4*a6=a*aq^2+2aq*aq^3+aq^2*aq^4=a^2(q^2+2q^4+q^6)=a^