已知数列an的前n项和为sn=四分之一n的平方加三分之二n加三,求这个数列的通
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:34:47
a(1)=s(1)=1-5a(1)-85,6a(1)=-84,a(1)=-14.a(n+1)=s(n+1)-s(n)=(n+1)-5a(n+1)-85-[n-5a(n)-85]=1-5a(n+1)+5
因为Sn-Sn-1=n^2-3n-{(n-1)^2-3(n-1)}=2n-4.又由an=Sn-Sn-1,所以an=2n-4,最后还要验证一下,当n=1时,S1=a1,符合题意.d=an-an-1=2易
当n=1时,a1=S1=32-1=31.当n≥2时,an=Sn-Sn-1=32n-n2-[32(n-1)-(n-1)2]=33-2n.当n=1时,上式也成立.∴an=33-2n.令an≥0,解得n≤3
S(n-1)=2a(n-1)-1所以Sn-S(n-1)=2an-2a(n-1)因为Sn-S(n-1)=an所以an=2an-2a(n-1)所以an=2a(n-1)an/[a(n-1]=2所以an是等比
n=1,S1=a1=(a1-1)/3,a1=-1/2;n=2,S2=a1+a2=(a2-1)/3,a2=+1/4;an=Sn-Sn-1=(an-1)/3-(an-1-1)/3=an/3-an-1/32
Sn=n-5an-85(1)S(n+1)=n+1-5a(n+1)-85(2)(2)-(1)整理得6a(n+1)=1+5an即a(n+1)-1=(5/6)(an-1)又由S1=a1=1-5a1-85得a
2^(n+1)-2^n=2*2^n-2^n=2^nb*an-2^n=(b-1)Sn,b*a(n+1)-2^(n+1)=(b-1)S(n+1)两式相减(左-左=右-右):[b*a(n+1)-2^(n+1
由Sn=n-Sa知,an=Sn-Sn-1=1(>=2).a1=1-Sa
1.n=1时,a1=S1=1²+1=2n≥2时,Sn=n²+nS(n-1)=(n-1)²+(n-1)an=Sn-S(n-1)=n²+n-(n-1)²-
(Ⅰ)证明:由a1+s1=2a1=2得a1=1;由an+Sn=2n得an+1+Sn+1=2(n+1)两式相减得2an+1-an=2,即2an+1-4=an-2,即an+1-2=12(an-2)是首项为
Sn=(n^2+n)/21/Sn=1/((n2+n)/2)=2/(n^2+n)Tn=1+2/6+2/12+2/30+.+2/n*(n+1)=1+(2/2-2/3)+(2/3+2/4)+.+(2/n-2
为了避免混淆,我把下角标放在内.首先从数列本身的基本意义出发a=S-S其次,从已知a=S(n+2)/n出发a=S*(n+1)/(n-1)因此S-S=S*(n+1)/(n-1)移项整理S=S
(1)证明:∵Sn=n-5an-85,n∈N*(1)∴Sn+1=(n+1)-5an+1-85(2),由(2)-(1)可得:an+1=1-5(an+1-an),即:an+1-1=56(an-1),从而{
解题思路:方法:数列通项的求法:已知sn,求an。求和:错位相减法。解题过程:
Sn=3an+2n可得S(n-1)=3a(n-1)+2n-2an=Sn-S(n-1)=3an+2n-3a(n-1)-2n+2即:an=3an-3a(n-1)+23a(n-1)=2an+2配项可得:3[
∵Sn=kq^n-k∴S(n+1)=kq^(n+1)-k∴a(n+1)=S(n+1)-Sn=[kq^(n+1)-k]-(kq^n-k)=k[q^(n+1)-q^n]=k[(q-1)q^na(n+1)/
Sn=1/3(an-1)Sn-1=1/3(an-1-1)Sn-Sn-1=1/3(an-an-1)即an=1/3(an-an-1)然后应该会了吧,可惜我用电脑不如手写的灵活,看看会了吗
当n=1时,a1=S1=1当n≥2时,an=Sn-S(n-1)=3n²-2n-3(n-1)²+2(n-1)=6n-5∵当n=1时,满足an=6n-5又∵an-a(n-1)=6n-5
再问:第二个式子是怎么待的?再答:从a11向后是等差数列,如果按照这个等差数列来计算第一项是-19,与(1)中的第一项是大小相等,符号相反,所以按照这个等差数列计算后,再加上两次前十项的和就行了,不好
Sn-S(n-1)=2An-2A(n-1)=An所以An=2A(n-1)An/2A(n-1)=2即An为等比为2的等比数列令n=1,S1=3+2A1=A1A1=-3所以An=-3*[2^(n-1)]