A B 正定 A B=AB

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/05 11:59:50
设A,B均为正定矩阵,则AB正定当且仅当AB=BA

用A*表示矩阵A的共轭转置,其余同.必要性:设AB是正定矩阵,则AB=(AB)*=B*A*=BA.充分性:设AB=BA,则我们已看到AB=BA=B*A*=(AB)*即AB是Hermite矩阵,下面只需

AB均为n阶正定矩阵,满足AB=BA,求证:存在一个n阶正定矩阵P,使P’AP和P’BP均为对角阵(P’为转置矩阵)

不能要求P是正定阵(否则有反例),只能要求P是正交阵再问:噢,我打错了,是正交,是不是根据正定阵是实对称矩阵,所以存在正交阵使得P’Ap为对角矩阵,然后P'BP此时也是实对称矩阵,因此存在正交阵Q使得

A,B都为n阶正定矩阵,证明:AB是正定矩阵的充分必要条件是AB=BA.

证明:因为A,B正定,所以A^T=A,B^T=B(必要性)因为AB正定,所以(AB)^T=AB所以BA=B^TA^T=(AB)^T=AB.(充分性)因为AB=BA所以(AB)^T=B^TA^T=BA=

设A,B为两个n阶正定矩阵,证明:AB为正定矩阵的充要条件是AB=BA.

证明:因为A,B正定,所以A^T=A,B^T=B(必要性)因为AB正定,所以(AB)^T=AB所以BA=B^TA^T=(AB)^T=AB.(充分性)因为AB=BA所以(AB)^T=B^TA^T=BA=

已知A,B为n阶正定矩阵,且有AB=BA,证明:AB也是正定矩阵.

因为AB=BA所以(AB)^T=B^TA^T=BA=AB所以AB是对称矩阵.由A,B正定,存在可逆矩阵P,Q使A=P^TP,B=Q^TQ.故AB=P^TPQ^TQ而QABQ^-1=QP^TPQ^T=(

设A是n阶正定矩阵,AB是n阶实对称矩阵,证明AB正定的充要条件是B的特征值全大于零

因为A正定,所以存在可逆阵C,使得A=C^TC而AB=C^TCB=C^T(CBC^(-1))C所以AB与CBC^-1合同.所以有AB正定CBC^-1正定CBC^-1的特征值都大于0B的特征值都大于0

[ab]

不知道你是在什么题中遇见这个符号的.在线性代数中是矩阵的意思.

A,B为n阶复矩阵,A半正定, A^rB=BA^r证明AB=BA

再问:不妨设,否则。。。这句怎么能这么做?看不懂这里再答:作成pdf文档,楼主可下载查看

ab

a负b正再问:为什么再答:ab小于0所以ab一正一负a+b小于0所以负数绝对值大于正数,绝对值a大于绝对值b,所以a负b正

设A ,B均为正定矩阵,则__ a.AB是正定矩阵,b.A+B是正定矩阵 c.A-B是正定矩阵 d.|A|=|B|

B因为A,B均为正定矩阵所以对于任意的XX'AX>0X'BX>0所以X'(A+B)X=X'AX+X'BX>0根据X任意性(A+B)是正定的

设A为m阶正定矩阵,B是m*n实矩阵,且R(B)=n,证明B'AB也是正定矩阵

首先证明任取n维列向量x≠0,Bx≠0因为R(B)=n,所以存在B的n级子式不为0,不妨设B前n行构成的子式|B1|不为0,则若B1x=0必有x=0,矛盾.所以B1x≠0,所以Bx≠0.这样因为A正定

a,b为两个n阶正定矩阵,且ab=ba证明ab也是正定矩阵,我想问如图答案的第一行最后一行怎么弄的,为什么ab=ba就能

首先,正定矩阵就必须是对称对阵,也就是A^T=A&B^T=B,所以第一行可以推出第二行;其次,如上面答案所说,矩阵P跟单位矩阵E合同,那么P正定,这个是判定正定矩阵的一个方法.

大学线性代数:已知A,B为n阶正定矩阵,且有AB=BA,证明:AB也是正定矩阵.

再问:谢谢啊!!网上的我都看不懂,看懂了你教的了。

A ,B 都是实正定矩阵 证明AB也是正定矩阵

先证AB为对称矩阵.这题应该缺少A,B可交换这一条件,否则AB为对称矩阵这一条件也无法满足.再证AB的特征值全为正.因为A,B为正定矩阵,所以对于矩阵A,B可以找到共同的正交矩阵T,使得T'AT=di

A,B可交换且是对称半正定矩阵,证明AB是对称半正定矩阵.注意是半正定!

A,B是对称的,可交换的故他们可同时对角化.且AB可与其同时对角化.A,B是半正定的,对角化后对角线上的结果是非负的.故AB对角化后的结果对角线上非负.故AB是半正定的.另外对称是显然的.再问:为什么

大学矩阵问题,在清华的线性代数上看到的一题,若A,B均为正定矩阵,且AB=BA,证明AB为正定矩阵,本人只知道一种方法是

如果真要用主子式来证的话可以这样先做谱分解A=QDQ^T,令C=Q^TBQ然后Q^TABQ=DC,C也是正定的容易验证DC的顺序主子式都是正的(清华的辅导书上给的证明用了两次谱分解)

A,B是正定矩阵 AB=BA 证明AB也为正定矩阵

实对称矩阵A,B,分别存在实对称正定矩阵C,D,使得A=C^2,B=D^2则有C'(AB)C=C^-1(CCDD)C=CDDC=C'D'DC=(DC)'DC=E'EE=DC可逆,所以C'(AB)C正定

设A,B是正定埃尔米特矩阵,若AB是埃尔米特矩阵,证明AB正定.

A=L*L^H,AB=L*L^H*B相似于L^H*B*L^{-H},后者正定,因而AB的特征值大于0.再问:AB=L*L^H*B相似于L^H*B*L^{-H},后者正定能再详细一点么?再答:不好意思,

关于正定矩阵的 急设A为n阶实对称矩阵 证明 B=I+A的平方 为正定矩阵设A为n阶正定矩阵,AB为是对称矩阵,则AB为

1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值

A,B均为Hermite矩阵,且A正定,B非负定,AB=BA,证AB为非负定.

AB=BA得到AB也是Hermite阵,只需验证其特征值非负先分解A=CC^H,然后AB=CC^HB相似于C^HBC,由惯性定理后者是半正定的