已知点P是抛物线y²=2x上的动点,点p到准线的距离为d

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:56:00
已知P是抛物线y=2倍(x-2)的平方的对称轴上的一个动点,直线x=t平行于y轴,分别与直线y=x抛物线y=2倍(x-2

y=2(x-2)^2的对称轴为x=2当x=t在y=2(x-2)^2与y=x的右侧的交点右侧时应满足2(t-2)^2-t=t-2当x=t在y=2(x-2)^2与y=x的右侧的交点与y=2(x-2)^2的

已知抛物线C1:x^2=y,圆C2:x^2+(y-4)^2的圆心为点M.已知点P是抛物线C1上的一点(异于原点),过点P

设点P(x0,x02),A(x1,x1^2),B(x2,x2^2);由题意得:x0≠0,x2≠±1,x1≠x2,设过点P的圆c2的切线方程为:y-x02=k(x-x0)即y=kx-kx0+x02①则|

已知抛物线y^2=4x上一点P到焦点F的距离是10,求点P的坐标.

答:抛物线y^2=4x=2px解得:p=2所以:焦点F(1,0),准线x=-1抛物线上点P到焦点F的距离等于点P到准线的距离:PF=x-(-1)=10解得:点P的横坐标x=9代入抛物线方程得:y^2=

求解:已知P是抛物线y^2=4x上的动点,求P点与原点连线的中点M的轨迹方程,谢谢了

设P点坐标为(x,y),则P点与原点连线的中点M的坐标为((x-0)/2,(y-0)/2)=(x/2,y/2)y^2=4x,则x=y^2/4x/2=y^2/8=(y/2)^2/2(y/2)^2=2*x

已知抛物线的方程为x²=8y,F是其焦点,点A(-2.4)在抛物线内部,在其抛物线上求一点P

x^2=2*4y,p=4,焦点坐标F(0,2),找出A点关于Y轴的对称点为B(2,4),连结BF,交抛物线于P,取第二象限交点,即为所求,直线BF方程为:(y-2)/(x-0)=(4-2)/(2-0)

已知点F是抛物线y^2=4x的焦点,点P在该抛物线上,且点P的横坐标是2,则|PF|=?

由于是抛物线,所以抛物线上一点到焦点的距离等遇到准线的距离|PF|就等于P点到准线的距离,准线x=-1,P点的恒坐标是2,所以|PF|为3再问:准线是怎么计算出来的,谢谢再答:圆锥曲线有第二定义,准线

已知P是抛物线y^2=2x上的动点,点P到准线的距离为d,且点P在y轴上的射影是M,点A(3.5,4),

抛物线y^2=2x的焦点为F(1/2,0)./PA/+/PM/=/PA/+d-1/2=/PA/+/PF/-1/2.当A、P、F三点共线时,/PA/+/PF/最小.直线AF的斜率为:k=4/(3.5-0

已知P(4,-1),F为抛物线y^2=8x的焦点,M为抛物线上的点

过M作MN//x轴交准线x=-2于N则:MF=MN所以,MP+MF=MP+MN≥PN所以,P、M、N三点共线时,MP+MF值最小所以,M点纵坐标=P点纵坐标=-1M点横坐标=(-1)^2/8=1/8即

已知抛物线y^2=2x的焦点为F,定点A(3,2)在抛物线内,求抛物线上点P,使IPAI+IPFI最小,P点坐标是?

抛物线定义PF=P到准线距离做AB垂直准线则当P是AB和抛物线交点时|PA|+|PF|最小则P纵坐标是2所以P(2,2)

已知抛物线x^2=4y上一点p到焦点的距离为3,点p纵坐标是

选D有抛物线性质可知准线为y=-1所以转化为纵坐标到准线的距离为到焦点的距离所以有y+1=3所以纵坐标为2

高中数学题,已知抛物线x^2=4y上一点P到焦点F的距离是5,则点P的横坐标是

对于抛物线y^2=2px其焦点坐标为(p/2,0)没有什么公式的,式中p是参数,y^2=2px是抛物线的一般形式(p/2,0)也就是它焦点坐标.(当然x,y的位置可以互换,但这时的焦点坐标就变成(0,

已知点Q(2根号2,0)及抛物线x平方=4y上一动点P(x,y),则y+|PQ|的最小值是:

一道简单得不能再简单的数学题?为什么你还不会做?

设P是抛物线Y^2=4X上的一个动点

易知,抛物线y^2=4x的焦点F(1,0),其准线是x=-1.点P到准线的距离d=|PF|.又点A(-1,1))在准线上,连结点AF,交抛物线的交点即是点P.点易知,d+|PA|=|AF|.===>最

已知点P是抛物线y^2=4x上的动点,点P在y轴上的射影是M,点A的坐标是(4,a),则当|a|>4时,PA+PM的最小

首先,当x=4时,代入抛物线方程y^=4x,求得|y|=4而|a|>4,说明A(4,a)是在抛物线之外(也就是在抛物线位于第一象限的上半支的上方或是下半支的下方)抛物线焦点可求得是F(1,0),准线L

一道抛物线的题,已知点P是抛物线y^2=4x上的动点,点Q在y轴上,且PQ垂直于y轴,A(2,3),则使PQ+PA取得最

已知点P是抛物线y^2=4x上的动点,点Q在y轴上,且PQ垂直于y轴,A(2,3),则使PQ+PA取得最小值时的P点坐标是什么?解析:∵点P是抛物线y^2=4x上的动点,PQ垂直于y轴,A(2,3)设

已知抛物线y平方=2px(p>0)的焦点为F 点是抛物线上横坐标为且位于x轴上方 点A到抛物线焦点距离为5 求抛物线方程

点A到焦点的距离等于到准线的距离,而y^2=2px准线方程为x=-1/2p;所以1/p+4=5;解之得p=2;抛物线方程为y^2=4x.

已知抛物线y^2=4x的焦点是F,点P是抛物线上的动点,定点A(2,1)

A在抛物线内部,从A向准线x=-1做垂线交抛物线于点P,则P即为所求.当y=1时,代人抛物线方程得到x=1/4,所以P(1/4,1)再问:为什么从A向准线x=-1做垂线交抛物线于点P时是最短的再答:因

已知抛物线y=4x上的一点p到y轴的距离为2,则点p到此抛物线的焦点的距离是

答:抛物线y^2=4x=2px2p=4解得:p=2焦点F(2,0),准线x=-2点P到y轴的距离为2,则到x=-2的距离为2+2=4所以:点P到焦点的距离为4