已知直线y=x k与抛物线y²=2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 07:53:10
抛物线C2:y^2=2px(p>0),此抛物线焦点坐标F2为:(p/2,0),抛物线C1:y=ax^2+bx,此抛物线焦点坐标F1为:[-b/2a,(4ac-b^2+1)/4a]∵抛物线C1:y=ax
设切点P(x0,y0),∵y=ax2∴y′=2ax,则有:x0-y0-1=0(切点在切线上)①;y0=ax02(切点在曲线上)②2ax0=1(切点横坐标的导函数值为切线斜率)③;由①②③解得:a=14
y=x+2带入抛物线x+2=x^2-4x^2-x-6=0x=-2orx=3y=0ory=5设切线方程分别为y=k(x+2)y-5=k(x-3)把y=k(x+2)带入抛物线k(x+2)=x^2-4x^2
y值相等,求出X,直接带入任意一个方程式
第二问:存在.将直线AB向右上方平移到与抛物线相切,切点M与AB的距离最大,此时三角形MAB面积最大.设切线的方程为y=-x+a,由于相切,它和y=-x平方+4组成的方程组只能有一组解,即方程-x+a
k=4将Y=4X^2与y=kx-1联立方程得:Y=4X^2(1)y=kx-1(2)将(2)代入(1)4X^2-kx+1=0又抛物线Y=4X^2与直线y=kx-1有唯一交点,即方程有唯一解则,配方得k=
先配方,y=(1/2)x^2-2x+1=(1/2)(x-2)^2-1,所以,顶点P(2,-1),对称轴x=2A是与y轴交点,所以点A(0,1),与y轴垂直表示平行于x轴,所以点B(4,1),点o(2,
联立两方程,求出的点就是抛物线与直线的交点,没有则说明两线没有交点.
题目有误,请改正.再问:双曲线改为x^2-y^2/3=1再答:(1)F(1,0),抛物线方程是y^2=4x,①(2)把l:y=k(x-2),即x=my+2,②其中m=1/k,代入①,得y^2-4my-
将y=x-2与y²=2x联立消去x得:(x-2)²=2x,x²-6x+4=0,设A(x1,y1),B(x2,y2).则x1+x2=6,x1x2=4.则x1x2+y1y2=
设C(x1,y1)D(x2,y2)由题目可知:p=4那么焦点F(2,0)因为直线的倾斜角为45,所以斜率为1所以直线方程为:y=x-2带入抛物线方程中有:(x-2)^2=8x即是:x^2-12x+4=
解(1)分别设OA,OB的斜率为k1,A(x1,y1),B(x2,y2)∴k1=y1/xi,k2=y2/x2解y²=-xy=k(x+1)得k²x+(1+2k²)x+k&s
连接AD交O′C于点E,∵点D由点A沿O′C翻折后得到,∴O′C垂直平分AD.C(0,-3),且△ADF∽△AEO‘∽△CO‘A∴在Rt△AO′C中,O′A=2,AC=4,∴O′C=2√5.1/2×O
直线y=ax+1恒过定点(0,1)该定点在抛物线内,所以不论a取何值(前提是a存在),都与抛物线有两交点.
将点A带入抛物线n=2^2=4所以A(2,4)再将A带入直线求出m=y-3x=4-6=-2所以直线y=3x-2联立抛物线和直线x^2=3x-2x^2-3x+2=0x1=1,x2=2所以另外一个交点等横
y=x²=3x+bx²-3x-b=0只有一个交点则方程只有一个解所以判别式为09+4b=0b=-9/4
设两点存在,分别为A(a2,a),B(b2,b),设AB的斜率为k′,k′=-1k,∴k′=a−ba2−b2=1a+b=-1k,∴a+b=-k,b=-k-a,设M(m,n),则m=a2+b22=(a+
证明:将抛物线和直线的方程联立:y^2=-x①y=k(x+1)②把②式代入①式化简:k^2*x^2+(2*k^2+1)*x+k^2=0根据韦达定理:xA*xB=1,代回抛物线方程yA*yB=-根号(-
(1)由y=2x²,y=4x消y得x=0或x=2故面积s=∫(0--2)4x-2x²dx=2x²-(2/3)x³|(0--2)=8/3(2)设直线方程为y=4x
解方程组y²=2pxy=x得y^2=2pyy=0y=p所以交点为(0,0)和(p,p)因为P(2,2)为AB的中点所以(0+p)/2=2p=4