已知矩阵A且有非零矩阵B使AB=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 06:55:25
设A,B都是n阶正交矩阵,且|AB|

证:因为正交矩阵的行列式是正负1再由|AB|

两矩阵AB乘积为零矩阵且已知A不是零矩阵,那么可得出B就是零矩阵吗?

不能.矩阵的乘法有零因子,不满足消去律怎么会利用上述结论?

设A和B为n阶矩阵,且A为对称矩阵,证明B'AB为对称矩阵

证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#

已知A和B都是n阶矩阵,且E-AB是可逆矩阵,证明E-BA可逆

反证,若E-BA不可逆,则存在X不为0,使(E-BA)X=0(方和有非零解)->X=BAX,则(E-AB)AX=AX-ABAX=AX-AX=0也即(E-AB)Y=0有非零解(其中Y=AX),与题设矛盾

已知A矩阵(3 1 2) B为三阶非零矩阵 且 AB=0,求a a+2 a-3 a 8 1 5

由AB=0,B是非零矩阵所以AX=0有非零解.所以|A|=0计算得|A|=a-17所以有a=17.

已知A,B为n阶正定矩阵,且有AB=BA,证明:AB也是正定矩阵.

因为AB=BA所以(AB)^T=B^TA^T=BA=AB所以AB是对称矩阵.由A,B正定,存在可逆矩阵P,Q使A=P^TP,B=Q^TQ.故AB=P^TPQ^TQ而QABQ^-1=QP^TPQ^T=(

已知矩阵A,矩阵B满足AB=BA,求矩阵B

碰到这种问题不要偷懒,直接用待定系数法把B的9个元素设出来,然后乘开来比较等上面的做法做过一遍之后再做取巧一点的办法:(A-E)B=B(A-E),同样乘开来比较上面两个都做过之后可以设法去证明与Jor

设A为n阶非零矩阵,且|A|=0,证明存在n阶非零矩阵B使AB=0

因为|A|=0所以r(A)再问:题目要求B是n阶矩阵,这里只证明了B可以是n×1矩阵呀?再答:令B的第1列为(k1,...,kn)^T,其余列都取0即可.

设A,B均为n阶矩阵.证明:分块矩阵AB BA是可逆矩阵当且仅当A+B A-B均为可逆矩阵

利用行列式的性质|ABBA|=|A+BBA+BA|=|A+BB0A-B|=|A+B||A-B|再根据矩阵可逆的充要条件是行列式不为0可知命题成立.

A,B均为Hermite矩阵,且A正定,试证AB相似于实对角矩阵.

A正定,则存在可逆阵G使得A=GG^T,则AB=G(G^TBG)G^{-1},即AB相似于G^TBG这个对称阵,因此相似于某个实对角阵.

A,B是n阶矩阵,且A是满秩矩阵,为什么R(AB)=R(B)?

A可逆,可表示为初等矩阵的乘积A=P1...PsP1,PsB相当于对B做初等行变换而初等变换不改变矩阵的秩所以R(AB)=R(B)

已知矩阵B和AB求A的逆矩阵

令AB=CA^(-1)=B*C^(-1)C^(-1)=(1,-1,0;0,1,0;0,0,1)接下来自己算一下吧^_^

大学线性代数:已知A,B为n阶正定矩阵,且有AB=BA,证明:AB也是正定矩阵.

再问:谢谢啊!!网上的我都看不懂,看懂了你教的了。

已知矩阵A={3.-1.0;0.4.5;2.1.2},B为三阶矩阵,且满足A^2+3B=AB+9I,求矩阵B

我先告诉你AC=BC时C不可以轻易约掉因为可变为(A-B)C=0当A不等于B(即A-B不等于0),C不为0时(A-B)C也可以等于0举个例子当A-B={100;010;001}C={011;101;1

已知矩阵A=0 3 3 1 1 0 -1 2 3,且AB=A+2B求矩阵B 这个应该怎么求?

因为AB=A+2B所以(A-2E)B=A(A-2E,A)=-2330331-10110-121-123r1+2r2,r3+r20132531-10110011033r1-r3,r2+r30022201

设有矩阵 ,,已知 —AB可逆,证明 —BA可逆,且 = +B A

[En+B(Em-AB)^(-1)A]·(En-BA)=En-BA+B(Em-AB)^(-1)A-B(Em-AB)^(-1)ABA=En-BA+B(Em-AB)^(-1)·Em·A-B(Em-AB)^

已知矩阵A=(2,0;-1,2),且AB=A+B,求B

 再问:能讲详细点吗?我不会做。谢谢,,初等行变换【(A-E),A】这一步再答:我不是已经标注了吗?就是第2行加上第一行,结果左边变成单位矩阵,右边就是所求矩阵B。再问:E=(1,0;01)

已知A ,B都是n阶矩阵,且E-AB是可逆矩阵,证明E-BA是可逆矩阵.

只要找出一个非零解满足(E-AB)Y=0,就可以说明与题设矛盾,假设E-BA不可逆,则(E-BA)X=0有非零解,则可得X=BAX.又(E-AB)AX=AX-ABAX=AX-AX=0,即AX为(E-A