已知矩阵满足AB=BA.已知矩阵A求矩阵B

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 17:33:06
线性代数问题:已知矩阵A为m*n,如何证明r(AB)=r(BA)=r(A)?其中B矩阵位A的转置矩阵.

前提是A是实矩阵要证明rank(A^TA)=rank(A),只需要验证A^TAx=0个Ax=0同解即可(注意A^TAx=0=>(Ax)^TAx=0)

线性代数 矩阵证明已知AB=A+B,证:1.(A-I)可逆;2.AB=BA .

有AB-A-B=0(A-I)B-A=0(A-I)B-(A-I)=I即(A-I)(B-I)=I所以A-I,可逆.故(A-I)(B-I)=(B-I)(A-I)=I即有AB-A-B+I=BA-B-A+I整理

已知矩阵E+AB可逆,求证E+BA也可逆

C=(E+AB)^(-1)(E-BCA)(E+BA)=E-BCA+BA-BCABA==E+B[-C+E-CAB]A=E+B[E-C(E+AB)]A=E==>E+BA可逆,且(E+BA)^(-1)=E-

n阶矩阵AB满足A+2B=AB证明AB=BA

证明:由A+2B=AB得(A-2E)(B-E)=2E所以B-E可逆,且(B-E)^-1=(1/2)(A-2E).所以(B-E)(A-2E)=2E整理有BA=A+2B再由已知得AB=BA.

已知A,B为n阶正定矩阵,且有AB=BA,证明:AB也是正定矩阵.

因为AB=BA所以(AB)^T=B^TA^T=BA=AB所以AB是对称矩阵.由A,B正定,存在可逆矩阵P,Q使A=P^TP,B=Q^TQ.故AB=P^TPQ^TQ而QABQ^-1=QP^TPQ^T=(

已知A,B均为N阶矩阵,且A2-AB=E,证明R(AB-BA-A)=N

∵A(A-B)=A²-AB=E.∴A可逆,且A^(-1)=A-B,即有B=A-A^(-1).∴BA=A²-E=AB,则AB-BA+A=A.又∵A为N阶可逆矩阵,∴r(AB-BA+A

已知矩阵A,矩阵B满足AB=BA,求矩阵B

碰到这种问题不要偷懒,直接用待定系数法把B的9个元素设出来,然后乘开来比较等上面的做法做过一遍之后再做取巧一点的办法:(A-E)B=B(A-E),同样乘开来比较上面两个都做过之后可以设法去证明与Jor

已知矩阵A,B满足AB=BA,证明:A,B是同级方阵

设A,B分别是m*n和n*m矩阵,则AB是m级方阵,BA是n级方阵.所以m=n.

一道矩阵运算设二阶矩阵A,B满足BA-B=2E,E是单位矩阵 已知B的伴随矩阵B* 求矩阵AB的伴随矩阵B*是 { 0

(B*)·B=|B|E.取行列式.|B*||B|=|B|².|B|=|B*|=1BA-B=2E,左乘B*:A-E=2B*.A=2B*+E=(12)-23

已知矩阵A非奇异,证明矩阵AB与矩阵BA相似

奇异矩阵也就是可逆矩阵,也就是|A|≠0,A存在A逆,矩阵相似就是存在P使得,P逆×B×P=A,即称A与B相似.本题有:A逆×AB×A=BA,所以AB与BA相似

线性代数证明可逆已知E+AB可逆(其中E为单位矩阵),试证E+BA也可逆,且有[(E+BA)-1]=E-B*[(E+AB

只要验证(E+BA)*{E-B*[(E+AB)-1]*A}与{E-B*[(E+AB)-1]*A}*(E+BA)都是单位阵E就行了.(E+BA)*{E-B*[(E+AB)-1]*A}=(E+BA)-(E

矩阵运算设二阶矩阵A,B满足BA-B=2E,E是单位矩阵 已知B的伴随矩阵B* 求矩阵AB的伴随矩阵B*是 { 0 1

BA-B=2E两端同时乘上B的伴随阵,B*B*BA-B*B=2B*由B*B=|B|E|B|A-|B|E=2B*对B*B=|B|E两端同取行列式得到|B|=|B*|所以|B*|A|-|B*|E=2B*从

已知n阶矩阵A,B满足A加B等于A乘B,(1)试证A减E为可逆矩阵,其中E为n阶单位矩阵;(2)试证必有AB=BA

证明:因为A+B=AB所以(A-E)(B-E)=AB-A-B+E=E所以A-E可逆,且(A-E)^-1=B-E.由上知A-E与B-E互逆故有(B-E)(A-E)=E可得BA=A+B从而有AB=BA.

大学线性代数:已知A,B为n阶正定矩阵,且有AB=BA,证明:AB也是正定矩阵.

再问:谢谢啊!!网上的我都看不懂,看懂了你教的了。

已知三阶矩阵A和B满足A+B=AB,求A

由A+B=AB,得(A-E)(B-E)=E所以A-E=(B-E)^-1=0-30200001的逆矩阵=01/20-1/300001所以A=11/20-1/310002

求解一道线性代数的题已知2阶矩阵A,E(单位阵),且矩阵B满足:BA=B+2E,求BA为2 1-1 2本题答案给的是:B

没有问题啊,“B是((A-E)/2)的逆”和“B是2((A-E)的逆)”是等价的.注意断句,是“B是2((A-E)的逆)”,不是“B是(2(A-E))的逆”一旦一个矩阵的逆已知了,那么这个矩阵也就唯一

已经矩阵A=1 0/2 1,求,满足AB=BA的所有矩阵

设B=abcd由AB=BA得[a,b][a+2b,b][2a+c,2b+d]=[c+2d,d]所以有a=a+2b2a+c=c+2d2b+d=d解得:b=0,a=d所以,满足AB=BA的矩阵为:a0ca

设有矩阵 ,,已知 —AB可逆,证明 —BA可逆,且 = +B A

[En+B(Em-AB)^(-1)A]·(En-BA)=En-BA+B(Em-AB)^(-1)A-B(Em-AB)^(-1)ABA=En-BA+B(Em-AB)^(-1)·Em·A-B(Em-AB)^

矩阵:已知AB=BA 证明(AB)^k=A^k*B^k(k为整数)

(AB)^k=(AB)(AB)…(AB)由于AB=BA,所以(AB)(AB)…(AB)=AAB(AB)…(AB)B=AAAB(AB)…(AB)BB=…=A^k*B^kk个ABk-1个ABk-2个AB…

已知A ,B都是n阶矩阵,且E-AB是可逆矩阵,证明E-BA是可逆矩阵.

只要找出一个非零解满足(E-AB)Y=0,就可以说明与题设矛盾,假设E-BA不可逆,则(E-BA)X=0有非零解,则可得X=BAX.又(E-AB)AX=AX-ABAX=AX-AX=0,即AX为(E-A