已知等差数列(an)的前n项和为sn若s15=75,a3 a4 a5=12
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:39:25
证明an=Sn-S(n-1)=100n-n^2-[100(n-1)-(n-1)^2]=100n-n^2-[100n-100-(n^2-2n+1)]=100n-n^2-(-n^2+102n-101)=1
因为Sn-Sn-1=n^2-3n-{(n-1)^2-3(n-1)}=2n-4.又由an=Sn-Sn-1,所以an=2n-4,最后还要验证一下,当n=1时,S1=a1,符合题意.d=an-an-1=2易
(Ⅰ)∵等比数列{an}的前n项和为Sn,S1,S3,S2成等差数列,∴2(a1+a1q+a1q2)=a1+a1+a1q,解得q=-12或q=0(舍).∴q=-12.(Ⅱ)∵a1-a3=3,q=-12
由题意可得a1b1=S1T1=524=13,故a1=13b1.设等差数列{an}和{bn}的公差分别为d1 和d2,由S2T2=a1+a1+d 1b1+b1 +d&nbs
(1)设等差数列{an}的公差为d,∵前n项和Sn满足S3=0,S5=-5,∴3a1+3d=05a1+10d=−5,解得a1=1,d=-1.∴an=1-(n-1)=2-n.(2)1a2n−1a2n+1
1、a4-a1=-9=3dd=-3an=25-3(n-1)=-3n+28an>0-3n+28>0n0,a10S8S9>S10所以n=9.Sn最大2、a2=a1+d=22a20=-60+28=-32有1
等差数列An=a1+(n-1)d因为a4+a6=a1+3d+a1+5d=2(a1+4d)=0所以a1+4d=0因为a3*a7=(a1+2d)(a1+6d)=(a1+4d-2d)(a1+4d+2d)=(
S(n)=n^2-9nS(n-1)=(n-1)^2-9(n-1)=n^2-2n+1-9n+9=n^2-11n+10a(n)=S(n)-S(n-1)=(n^2-9n)-(n^2-11n+10)=2n-1
S1=a1S2=a1(1+q)S3=a1(1+q+q^2)S1,S3,S2成等差数列即s3-s1=s2-s31+q+q^2-1=1+q-(1+q+q^2)q^2+q=-q^2q=0或-1/2如果a1-
a2=a1qa8=a1q^7a5=a1q^42a8=a2+a52a1q^7=a1q+a1q^42q^6=1+q^32q^6=1+q^32q^6-q^3-1=0(2q^3+1)(q^3-1)=0q^3=
S12=6(a6+a7)>0a6+a7>0S13=13*a7-a7绝对值最小的是第7项
An=n^2-17n分解因式得An=(n-17)n这个二次函数与x轴的交点是0和170和17的中点是8.5就是说n取8或9均可以使得Sn最小答案:8或9
证明:设等差数列{an}的首项为a1,公差为d,则Sn=na1+n(n−1)d2.bn=Snn=a1+n−12d.则bn+1−bn=a1+n2d−a1−n−12d=d2.∴数列{bn}是等差数列.
∵等差数列{an}{bn}的前n项和分别为Sn,Tn,∵SnTn=7nn+3,∴a5b5=s9T9=7×99+3=6312=214,故答案为:214
S12>0,S1307d+24>0d>-24/7S13=(a1+a1+12d)*13/2=(2a1+12d)*13/2=13(a1+6d)=13(a1+2d+4d)=13(a3+4d)=13(12+4
等差数列求和公式:Sn=n*a1+n*(n-1)*d/2S12=12*a1+12*11*d/2=12*a1+66d>0得a1+5.5d>0S13=13*a1+13*12*s/2=13*a1+78d
知道Sn,求an,需记住an=Sn-Sn-1当n=1是an=Sn=n²=1当n>=2时an=Sn-Sn-1=n²-(n-1)^2=2n-1a1=1也符合此式则an=2n-1再问:做
设公差为dS12=(a3+a10)*6=(2a3+7d)*6=(24+7d)*6>0S13=a7*13=(a3+4d)*13=(12+4d)*130且12+4d
证::n=1,a1=s1=4n>1an=Sn-Sn-1Sn=n^2+3nSn-1=(n-1)^2+3(n-1)an=2n+2经验证n=1满足通项n>1an-an-1=2,由等差数列定义可知,数列{an
当n=1时,a1=S1=1当n≥2时,an=Sn-S(n-1)=3n²-2n-3(n-1)²+2(n-1)=6n-5∵当n=1时,满足an=6n-5又∵an-a(n-1)=6n-5