a 的伴随矩阵与a的关系
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 16:46:38
A^-1表示A逆A*表示A的伴随阵|A|表示行列式A因为A^-1=A*/|A|所以B=A*=|A|A^-1同理B^-1=B*/|B|那么B*=|B|B^-1将B=|A|A^-1代入上式则可:B*=|A
A的特征多项式为|A-λE|=|A的转置-λE|,所以A与A的转置有相同特征值
是不是因为伴随就只是求逆的一个桥梁?可以这么说.关于伴随矩阵只需记住2个基本结论:1.AA*=|A|E2.|A*|=|A|^(n-1)
设A是一个n阶方阵,则有下列结论:当r(A)=n时,r(A*)=n当r(A)=n-1时,r(A*)=1当r(A)所以当|A|=0时,A的秩与A*的秩一般不相等(除n=2,r(A)=1情况)由于合同矩阵
由于|A|A逆=A*则(A逆)*=|A逆|(A逆)逆=A/|A|而(A*)逆=(|A|A逆)逆=(A逆)逆/|A|=A/|A|(第二个用到公式(aA)逆=A逆/a)所以两者相等
A小于n-1伴随矩阵为0等于n-11等于n为n
分两种情况考虑:1.如果A可逆,则原命题成立.A*=A^(-1)*constconst是一个常数设V是A的特征向量,设V的特征值为L则:V=I*V=A^(-1)*A*V=A^(-1)*L*V所以A^(
个人认为由于A*=1A1B(B为A的逆)所以能导出特征值关系,但是2003年数一大题第一个答案却不是这样,感觉再出得可能性不大.
因为A的伴随矩阵的行列式等于A的行列式的n-1次方所以A*的行列式不为零.则得到(A*)=n再问:我可以再问你几个吗再答:嗯
请看图片
(A)=n-1,则r(A*)=1.此时A*A=|A|E=0所以A的非零列向量都是A*的属于特征值0的特征向量再问:我看答案特征值是0和对角线上元素的代数余子式的和,就是A11+A22+……Ann请问这
首先知道一个定理:A正定存在可逆矩阵C,使得A=C*C的转置接下来证明你的题:因为A正定所以存在可逆矩阵C,使得A=C*C的转置设C的逆的转置=D则D可逆,且A的逆=D*D的转置(对上式两边取逆就得到
伴随矩阵是矩阵的代数余子式形成的矩阵的转置矩阵A*=A11A21……An1A12A22……An2……………………A1nA2n……Ann其中Aij为A中元素aij的代数余子式
|2A*|=2^3|A*|=8|A|^(3-1)=8*2^2=32用到2个性质1.|kA|=k^n|A|2.|A*|=|A|^(n-1)
按下图可以严格证明这个性质.请采纳,谢谢!
(2)(1)|AA*|=|A||A*|=|A||A|^(n-1)=|A|^n.
因为A*A=IAIEIA*AI=IIAIEI=IAI^n,IA*IIAI=IAI^n,故IA*I=IAI^(n-1),若A能对角化,A的特征值为d1,d2,..,dn.则有IAI=d1d2,..,dn
设A的矩阵是[ab][cd],那么按照伴随矩阵的定义可知A的伴随矩阵为[d-b][-ca],由题设A的伴随矩阵等于[25][13],所以有a=3,b=-5,c=-1,d=2.所以矩阵A是[3-5][-
对于三阶矩阵a11a12a13a21a22a23a31a32a33首先求出各代数余子式A11=(-1)^2*(a22*a33-a23*a32)=a22*a33-a23*a32A12=(-1)^3*(a
令P是对换ij行的排列阵那么B=PA由此得到adj(B)=adj(A)adj(P)把adj(P)算出来就行了事实上P=P^{-1},所以adj(P)=det(P)P^{-1}=-P也就是说adj(B)