A,B都是对称矩阵,则AB=BA成立?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 04:46:35
由已知A^T=A,B^T=B所以(A+B)^T=A^T+B^T=A+B(A-2B)^T=A^T-2B^T=A-2B所以A+B,A-2B是对称矩阵再问:可以变成图片的方式吗,写在纸上?再答:^T是转置记
证明:因为A是对称矩阵所以A'=A.所以(B'AB)'=B'A'(B')'=B'AB所以B'AB是对称矩阵#
AB是对称矩阵(AB)'=ABB'A'=AB你的前提条件不足,A,B应该是对称矩阵,这样就有BA=AB
条件表明A'=AB'=BA'B'表示转置故(A+B)'=A'+B'=A+B(A-2B)=A'-2B'=A-2B两式表明A+B,A-2B也都是对称矩阵
充分性:因为AB=BA,所以(AB)'=B'A'=BA=AB,从而AB是对称矩阵必要性:因为AB为对称矩阵,所以AB=(AB)'=B'A'=BA再问:在必要性中,(AB)'怎么=(BA)'的再答:AB
若AB是对称矩阵,则AB=(AB)^T=B^TA^T=BA若AB=BA,则AB=BA=B^TA^T=(AB)^T故AB是对称的.BA同理可得
经济数学团队为你解答,有不清楚请追问.请及时评价.
证明:必要性已知AB为对称阵转置(AB)'=B'A'又A'=AB'=B(AB)'=AB所以有AB=BA充分性已知AB=BA(AB)'=(BA)'=A'B'又A'=AB'=B所以(AB)'=ABAB为对
(1)若AB是对称矩阵,则(AB)T=AB,而(AB)T=BTAT=BA,故有BA=AB;反之,若BA=AB,则(AB)T=BTAT=BA=AB,即(AB)T=AB,AB为对称阵.(2)(A+AT)T
证明:[(E+AB)^-1A]^T^T表示转置,楼主懂得,证明矩阵对称的思路:就是证明转置矩阵是否等于矩阵本身)另外,题中:A+B都是n阶对称矩阵.不对吧,应该是A和B都是n阶对称矩阵[(E+AB)^
证明:必要性由于A,B都是n阶正定矩阵,根据正定矩阵的定义,A,B都是n阶对称矩阵,即A'=A,B'=B(这里A'表示A的转置矩阵).若AB正定,则AB也是对称矩阵,从而AB=(AB)'=B'A'=B
这个用双向证明.证明:由已知,A'=A,B'=B所以AB是对称矩阵(AB)'=ABB'A'=ABBA=ABA,B可交换.
(B-1AB)T=BTAT(B-1)T由于AT=A,B-1=BT,(B-1)T=(BT)T=B原式=B-1AB故B-1AB是对称矩阵
这个(C)正确因为A,B正定所以|A|>0,|B|>0所以|AB|=|A||B|>0所以AB可逆.
1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值
1.因为若A与B都是n阶正交矩阵所以AA'=A'A=E,BB'=B'B=E所以(AB)'(AB)=B'A'AB=B'B=E所以AB是正交矩阵.2.因为(A+A')'=A'+(A')'=A'+A=A+A
第一题选B,因为(AB)^T=BA不等于AB.第二题选C,因为不能确定AB的行列式是否为0.要注意只有方阵才有逆矩阵.
若A,B都是n阶对称矩阵,则有A的转置=A,B的转置=B.(2A--3B)的转置=2*A的转置-3*B的转置=2A--3B∴2A-3B也是对称矩阵.(AB--BA)的转置=(AB)的转置--(BA)的
若A,B都是n阶对称矩阵,则有A的转置=A,B的转置=B.(2A--3B)的转置=2*A的转置-3*B的转置=2A--3B∴2A-3B也是对称矩阵.(AB--BA)的转置=(AB)的转置--(BA)的
必要性:(1)AB是对称矩阵=>(AB)'=AB(2)又(AB)'=B'A',且A,B为对称矩阵=>A'=A,B'=B故(AB)'=B'A'=BA由(1)(2)知AB=BA充分性:AB=BA,而A,B