alnx=lnxa
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 05:30:22
分式的导数公式是[p(x)/q(x)]'=[p'(x)q(x)-p(x)q'(x)]/[q(x)^2]f(x)=alnx/xf'(x)=a*[(1/x)*x-(lnx)*1]-------------
(1)h(x)=根号x-alnx,h‘(x)=1/(2根号x)-a/x,(x>0),当x>4a^2时,h‘(x)>0,h(x)为增函数,当x
对两边取对数ln(x^a)=alnxln[e^(alnx)]=alnx所以X^a=e^alnX
(1)f′(x)=2x+ax(x>0),∵f(x)在x=1处取得极值,∴f′(1)=0,即2+a=0,a=-2,检验x=1处d导数左负右正,故为极值,∴a=-2;(2)g(x)=f(x)+2x=x2+
h(x)=f(x)+g(x)=x-1/x+alnx(x>0)h'(x)=1+1/x^2+a/x=(x^2+ax+1)/x^2h(x)有两个极值点令h'(x)=0即x^2+ax+1=0那么方程有2个不等
f(1)=0只需证明:f(x)>f(1)只需证明当x>1时单调增.f'(x)=1-(2lnx)/x+2a/x=(2a+x-2lnx)/x只需证明:2a+x-2lnx>0上式左边再求导数:1-2/x,令
楼上的回答还有一些地方需要纠正一下,我借用一下一些结论即求x>1时,总有(e^x-a)/x>alnx+a成立即总有e^x-a>ax(lnx+1)成立即总有e^x>a[xlnx+x+1]成立∵x>1时,
1、F(x)=2x^2-16lnx,∴F’(x)=4x-(16/x),由F’(x)=0得x=2,(∵x>0),当x∈[1,2)时,F’(x)0,∴F(x)在(2,3]上为增函数,又F(1)=2,F(2
函数f(x)=x2+alnx若gx=fx+2/x=x^2+alnx+2/x求导得到g'(x)=2x+a/x-2/x^2=(2x^3+ax-2)/x^2g(x)在[1,4]上是减函数故g'(x)=2x+
1,f'(x)=(1/2)x^(-1/2),g'(x)=a/x在交点处有以下两个式子根号x=alnx,(1)(1/2)x^(-1/2)=a/x(2)解得a=e/2,此时x=e^2或a=-e/2,此时x
定义域为整数求导f‘(x)=a/x-2/x^2=(ax-2)/x^2分母始终大于0.只需讨论分母当a小于等于0时,恒为减函数当a大于0时,x=2/a为极小值点.即此时在(0,2/a)上减函数,在(2/
F(x)=1/(ex)-lnx-1,(x>0)F'(x)=-1/(ex^2)-1/x=-(1/x^2)(1/e+x)x>0时,F'(x)=-(1/x^2)(1/e+x)
显然,原函数的定义域为x>0(1)令f'(x)=a/x-1/(x^2)=0得极值x0=1/a且当x>x0时,f'(x)>0,f(x)递增当0
这不是陕西今年的高考题吗,求导即可,很简单的.1.令二者导数相等,且相交,列两个方程2.求导,讨论函数的单调性,判断最值何时存在
(1)h(x)=√x-alnx,定义域x>0令h'(x)=1/(2√x)-a/x=0,解得x=4a^2,即在定义域内,当x=4a^2时,h(x)取得唯一极值点又h(x)存在最小值,故当x=4a^2时得
即求x>1时,总有(e^x-a)/x>alnx+a成立即总有e^x-a>ax(lnx+1)成立即总有e^x>a[xlnx+x+1]成立∵x>1时,xlnx+x+1>2>0所以只需证a
证明:函数f(x)的导函数为f'(x)=1-(2lnx)/x+2a/x对f'(x)再求导得f''(x)=-2a/x²-(2-lnx)/x²=(lnx-2a-2)/x²所以
g'(x)=f'(x)+a=a/x-2x+a=0得-2x^2+ax+a=0x1=(-a+根号(a^2+8a))/(-4)=a/4-根号(a^2+8a)/4x2=(-a-根号(a^2+8a))/(-4)
答:f(x)=x^2-alnx,x>0;f'(x)=2x-a/x1)当a=0,f(x)是增函数.