我们把顺次连接任意一个四边形各边中点 任意平行四边形的中点四边形是什么形状
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:20:34
设任意四边形ABCD连接对角线AC、BD交于O连接EFGH(E、F、G、H分别为AB、BC、CD、DA的中点)在三角形ABD中因为EF是中位线,所以EH//BD,EH=1/2BD在三角形BCD中因为G
(1)△AEH和△CFG的面积是四边形ABCD的面积的四分之一.证明:因为E、F、G、H分别为各边的中点所以EH是△ABD的中位线,GF是△CBD的中位线.所以AE/AB=AH/AD=1/2,CF/C
∵四边形A1B1C1D1是矩形,∴∠A1=∠B1=∠C1=∠D1=90°,A1B1=C1D1,B1C1=A1D1;又∵各边中点是A2、B2、C2、D2,∴四边形A2B2C2D2的面积=S△A1A2D2
是的,凸四边形就是说所有的内角都小于180°
证明:设四边形为ABCD,E,F,G,H分别是AB,BC,CD,AD的中点连接AC,BD∵E是AB的中点,H是AD的中点∴EH是⊿ABD的中位线∴EH//BD∵F是BC的中点,G是CD的中点∴FG是⊿
证明:四边形ABCD中,EFGH分别为ABBCCDDA中点联结EFGH,在三角形ABC中,EF是AC边的中位线,EF平行AB且等于1/2AB,同理,GH平行AB且等于1/2AB,所以EF平行GH且等于
连接原来四边形的一条对角线根据三角形中位线定理,可以得到新得到的四边形的一组对边和这条对角线平行,且等于它的一半,所以这组对边平行且相等,从而得到这是平行四边形.再连接另一条对角线,同样得到另一组对边
在任意四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.连接EF、FG、GH、HE形成四边形EFGH.连接B、D(对角线),设:h为△ABD的高,S△ABD=1/2h×(BD)在△A
四边形ABCD,AB,BC,CD,DA的中点分别是E,F,G,H连接四边形的两条对角线AC,BD交与点O连接EO,FO,GO,HO在三角形ABD中EH是中位线,与AC交与点P所以EH//BD所以AP/
当原四边形对角线互相垂直时.再问:有没有过程再答:不好意思,应该是当原四边形对角线相等时。顺次连接任意四边形各边中点,那么证明新四边形是平行四边形用【两组对边分别相等】(三角形中位线定理)那么如果原四
连接AC,BD,∵四边形ABCD是等腰梯形,∴AC=BD,∵E、F、G、H分别是AD、AB、BC、CD的中点,∴EF=12BD,EH∥AC,EH=12AC,FG∥AC,FG=12AC,∴EH=EF,E
满意答案小安妮的小泰迪7级2011-04-25连接四边形的两条对角线,你会发现四个中点的连线是三角形的中位线,然后两两平行,证出是平行四边形追问:你能配上图来解说吗?回答:E,F,G,H是中点,EF是
1平行四边形根据中位线定理,EF平行AC,GH平行AC且都等于AC一半,所以EF和GH平行且相等2垂直由于EF平行AC,EH平行BD,若AC垂直BD,则EF垂直EH,有一个角是直角的平行四边形是矩形3
平行四边形,矩形,矩形,正方形,不规则四边形
正方形的还是正方形,矩形的是菱形,菱形的是矩形,平行四边形的是平行四边形,等腰梯形的是菱形
矩形,不用画图,中点连线平行且等于对角线的一半.所以得到的四边形,对边平行相等,邻边互相垂直.
长方形因为是菱形,所以各边边长相等,链接中点,可知得到的四边形的对边相等,则为平行四边形得到的四个三角形都为等腰三角形,所以得到的四边形的角为直角,所以为矩形