a的行列式不等于零

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 19:31:03
如果矩阵A的行列式乘以矩阵B的行列式不等于0,能不能说明A和B的行列式都不等于零?

|A|,|B|是两个数,两个数的积不为0,这两个数当然都不为0所以|A|,|B|都不为0

证明 设A使n阶方阵,A不等于O,则存在一个非零矩阵B,使得AB=O的充要条件为A的行列式为0

证明:必要性.因为存在一个非零矩阵B,使得AB=O所以B的列向量都是AX=0的解向量所以AX=0有非零解所以|A|=0.充分性.因为|A|=0,所以AX=0有非零解b1,...,bs令B=(b1,..

克拉默法则说:"若线性方程组的系数行列式不等于零,那么方程组有唯一解."还有一个定理说:"如果齐次线性方程组的系数行列式

这两种说法并不矛盾.“如果齐次线性方程组的系数行列式不等于零,则它没有非零解”,就是说,它的解也是唯一的,这个“唯一的解”是零解.比如Ax=b,若b≠0,则为“非齐次线性方程组”,当│A│≠0时,有唯

如果线性方程组的系数行列式不等于零,则这个线性方程组一定有解,且解唯一.

如果一个线性方程组无解或者存在不唯一的解,则这个线性方程组的线性行列式等于零._____A∩B=A∪B既后一个的否命题原型.

线性方程组的通解 齐次线性方程组的系数矩阵A(n阶方阵)的行列式值为0,Aij不等于零,证明:

证明:因为|A|=0所以AA*=|A|E=0所以A*的列向量都是AX=0的解.又因为|A|=0所以r(A)=1,所以r(A)>=n-1所以r(A)=n-1.所以AX=0的基础解系含n-r(A)=1个解

证明:A是n阶方阵,A不等于0,则存在一个非零矩阵B,使得AB=0的充要条件为A的行列式的值=0

反证法:若A的行列式不为零,则A的秩为n,即A满秩,A可逆,等式两边的左侧都乘以A的逆矩阵,得到B=0,矛盾,故A不可逆,极为A的行列式值为0.

已知A的行列式为零,证明A的伴随矩阵的行列式为零.

经济数学团队帮你解答,有不清楚请追问.请及时评价.

线性代数,如果已知A不等于E,能推断出A-E的行列式不等于零吗?

显然不能例如把E的一个1变成0,把它记做A,E-A行列式为0

矩阵A为任意非零矩阵,矩阵A属于交换环G,如何推出A的行列式不等于零?

这里的Q是有理数域的意思第二题的解答也有问题,合理的做法是|A|=a^2-2b^2≠0(因为2^{1/2}不是有理数)总体来讲就是你看的材料质量太差,所以你没能看明白

矩阵满秩满秩矩阵的行列式一定不等于零吗?

你仔细去看一下,矩阵的秩是怎样定义的就明白了.矩阵A中如果存在一个r阶子式不等于0,而所有的r+1阶子式(如果存在的话)全等于0,则规定A的秩R(A)=r.n阶方阵A满秩,就是A的秩为n,则A有一个n

如果矩阵A可逆,那么行列式A的值是不是一定不等于零?如果矩阵A不可逆,那么行列式A的值是不是一定等于零

两个都是充要条件如果矩阵A可逆,|A|不等于零如果矩阵A不可逆,|A|=0这个是线性代数的一个定理,证明我忘了

A、B都是n阶方阵.为什么B的行列式不等于零,r(AB)=r(A)

因为B行列式不为零,所以B=k*Q1Q2...Qt(Qi为初等矩阵,对应A的初等列变换)由于矩阵经过初等列变换不改变秩,故A经每步初等列变换秩序不变,故r(AB)=r(A)不懂追问

有关可逆矩阵的行列式请如果矩阵A为nxn可逆矩阵,那么是否一定有A的行列式不等于零?

若A为可逆阵,那么有A*A-1=E两边取行列式有|A*A-1|=|E|=1而左边有|A*A-1|=|A|*|A-1|=1≠0,所以|A|≠0证毕.

为什么行列式不等于零 矩阵可逆?

求逆公式是什么?1/{A}*{A}的伴随矩阵,你觉得什么东西分母可以等于0的呢?

设n阶行列式|aij|不等于零,则线性方程组

/>设A为系数矩阵增广矩阵B=(A,b)=a11a12……a1n-1a1na21a22……a2an-1a2n……an1an2……annn-1ann因为|B|=|aij|不等于零所以r(B)=n所以A列

已知3阶方阵A的行列式|A|=a不等于0,则行列式|-2A|=

|-2A|=(-2)^3*a=-8a再问:矩阵A=211160为()定矩阵。103