bg交ac于点e,f为ab上一点,cf垂直于点h
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:43:17
连接EC∵AB=AC,∴∠ABD=∠ACD又∵AD⊥BC,∴∠ADB=∠ADC=90°可得△ABD≌△ACD∴BD=CD可得△BED≌△CED∴BE=CE∵∠ECF=∠EGC又△ABE≌△ACE∴∠A
(1)因DG=DB,因此△BDG为等腰三角形,又因DE⊥BG于E,则推出E为BG的中点,BG=2BE(2)1.5(3)k/2
因为BG平行与AC所以角GBD=角DCA又因为角BDG=角CDFD为BC中点,所以BD=CD,所以由角角边的定理推出三角形BGD全等于三角形CFD,所以BG=CF.(2):由于全等,所以D也为GF的中
(1)连接BE,DF.∵DE⊥AC于E,BF⊥AC于F,∴∠DEC=∠BFA=90°,DE∥BF,在Rt△DEC和Rt△BFA中,∵AF=CE,AB=CD,∴Rt△DEC≌Rt△BFA,∴DE=BF.
∵DE⊥AC于点E,BF⊥AC于点F∴∠AFB=∠CED=90∴△AFB和△CED是直角三角形∵AB=CDAF=CE∴△AFB≌△CEDHL∴DE=BF∵∠DME=∠BMF∠DEM=∠BFM=90DE
1、证明:连接AC、OA、OG∵BC为直径,A为圆上一点∴∠BAC=90∴∠ACB+∠ABC=90∵AD⊥BC∴∠BAD+∠ABC=90∴∠BAD=∠ACB∵A为弧BG的中点∴弧AB=弧AG∵∠ACB
(1)由AC∥BG,得:∠BGD=∠CFD,∠GBD=∠FCD,结合BD=CD,可知: △BGD、△CFD全等,得:BG=CF.(2)由△BGD、△CFD全等,得:DG=DF,结合DE⊥DF,得E
BE+CF>EF用三角形三边定理
证明:(1)∵BG∥AC,∴∠DBG=∠DCF.∵D为BC的中点,∴BD=CD又∵∠BDG=∠CDF,∴△BGD≌△CFD(ASA).∴BG=CF.(2)BE+CF>EF.∵△BGD≌△CFD,∴GD
可以先画一草图BG平行ACBD=DC且角度BDG与角度CDF为对顶角,所以三角形BDG与三角形CDF为全等三角形,所以CF=BG,DG=DF,DE垂直DF,即为DE垂直FG,DG=DF,三角形GEF为
△CFD≌△BGDCF=BG,DG=DF△EGD≌△EDFEF=EG△EBG中,BE+BG>EGBE+CF>EG
作BH平行于CF,CH平行于BE,BH和CH交于H;连接GH;可见BGCH是平行四边形;而D是对角线BC的中点,则D就是BC和GH这两条对角线的交点;则GD=DH;则GH=2GD=AG;又∵BH平行于
1、证明:∵∠BMF+∠GNC=180,∠BMF+∠GMF=180∴∠GNC=∠GMF∴CD∥EF(同位角相等,两直线平行)2、解∵CD∥EF∴∠DCB=∠EFB(两直线平行,同位角相等)∵∠GDC=
过B作BH⊥ED,交ED延长线于H∵AB=AC∴∠ABC=∠ACB∵BH⊥ED,ED⊥AC,BG⊥AC∴BH//EG,BG//EHBG=EH,∠CBH=∠ACB∴∠CBH=∠ABC又,BD=BD∴Rt
1)∵AC‖BG∴∠DCF=∠DBG∵D为BC中点∴CD=BD在△DCF和△DBG中〔∠DCF=∠DBG〔CD=BD〔∠CDF=∠BDG∴△DCF≌△DBG∴CF=BG,DF=DG(2)结合(1)又∵
(1)在△CDF和△BDG中∵角GDB=角FDCBD=CD角GBD=角FCD∴△CDF≌△BDG∴BG=CF(2)连接EG∵△CDF≌△BDG∴GD=FD又∵ED⊥GF∴ED垂直平分GF∴EF=EG又
1、证明:∵D是BC的中点∴BD=CD∵BG∥AC∴∠GBD=∠C∵∠BDG=∠CDF∴△BDG≌△CDF(ASA)∴BG=CF2、BE+CF>EF证明:∵△BDG≌△CDF∴GD=FD∵DE⊥GF∴
(1)证明:∵四边形ABCD是矩形,∴∠ABE=∠ECF=90°.∵AE⊥EF,∠AEB+∠FEC=90°.∴∠AEB+∠BAE=90°,∴∠BAE=∠CEF,∴△ABE∽△ECF;(2)△ABH∽△
证明:∵EF⊥ACBG⊥AB(1)∴∠FEC=∠FBG=90°∵∠AFE=∠GFB∴Rt△AEF∽Rt△GBF∴FA/FG=EF/BF∵∠ACB=90°∴EF∥CB∵EF平分AC∴FC=FA∴FC/F
首先,题图不符,无解但是,如果cg//ab,用解几,以d为原点,bc为x轴,ad为y轴,通过计算(没耐性就别用),用平几,由对称,be=ec(1),∠abe=∠ace,由如果你的条件是cg//ab,则