bn=log2a1 loga2
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:41:23
Tn+Bn/2=1Tn=1-Bn/2T(n-1)=1-B(n-1)/2Tn-T(n-1)=Bn=-Bn/2+B(n-1)/22Bn=-Bn+B(n-1)3Bn=B(n-1)Bn/B(n-1)=1/3n
(1)由条件得2bn=an+an+1,an+12=bnbn+1由此可得a2=6,b2=9,a3=12,b3=16,a4=20,b4=25…(6分)(2)猜测an=n(n+1),bn=(n+1)2用数学
n=b^2n,Tn=b^2+b^4+b^6+……+b^2n=b^2n(1-b^2n)/(1-b^2)所以1-bn=1-b^2n所以(1-bn)/Tn=(1-b^2n)/{b^2(1-b^2n)/(1-
(1)bn,√an,bn+1成等比所以an=bn*bn+1所以a1=b1*b2=3a2=b2*b3=6所以b1*(b1+d)=3(b1+d)*(b1+2d)=6解得:b1=√2d=√2/2或者b1=-
n=Bn-B(n-1)=(n+1)/2*bn-n/2*b(n-1)bn=(n+1)/2*bn-n/2*b(n-1)bn=n/(n-1)*b(n-1)=n/(n-2)*b(n-2)=...=n*b1=n
am+an+bm+bn=a(m+n)+b(m+n)=(a+b)(m+n)本来面积=a^2剪去的一个小正方形=b^2,所以4个是4b^2所以剩于部分的面积=a^2-4b^2=(a+2b)(a-2b)=(
由题意可知bk-b(k-1)=2^(k-1)+(k-1)当k=2,3,4,...,n时b2-b1=2^1+1b3-b2=2^2+2.bn-b(n-1)=2^(n-1)+(n-1)将这n-1个等式相加,
n=1-an,第二个式子代入bn=1-anbn+1=(1-an)/(1-an^2)=1/(1+an)an+1=1-bn+1=an/(1+an)求倒数1/(an+1)=1+1/an令cn=1/an,cn
因为an为等比数列an=a1×q^(n-1)所以a4=a1×q^3q=2所以数列通项公式an=a1×q^(n-1)=2^nbn-b(n-1)=log22^nbn-b(n-1)=n叠加法当n≥2时b2-
当n≥2时,有bn=Tn-T(n-1)所以由6Tn=(3n+1)bn+2得6T(n-1)=(3(n-1)+1)b(n-1)+2上两式相减得6(Tn-T(n-1)=(3n+1)bn-(3n-2)b(n-
(a+b)*(m+n)
n=2/[n*(n-1)]=2*[1/(n-1)-1/n]当n=1时,b1不可能符合bn=2/[n*(n-1)]所以n>=2时,才有bn=2/[n*(n-1)]Sn=b1+b2+b3+……+b(n-1
n=2/(n^2+n)=2[1/n-1/(n+1)]b1+b2+.+bn=2(1-1/2+1/2-1/3+...1/n-1/(n+1))=2(1-1/(1+n))=2n/(n+1)因为n/(n+1)大
n+1-bn=(1/2)^nbn-bn-1=(1/2)^(n-1)……b2-b1=1/2以上累加得b(n+1)-b1=1/2+(1/2)²+……+(1/2)^n=1-(1/2)^nb(n+1
(am+bn)^2+(an-bm)^2=(am)^2+2abmn+(bn)^2+(bm)^2-2abmn+(an)^2=(am)^2+(bn)^2+(bm)^2+(an)^2=a^2(m^2+n^2)
根据数列求和公式Sn=(a1+an)*n/2An/Bn=[(a1+an)*n/2]/[(b1+bn)*n/2]=(a1+an)/(b1+bn)由等差数列有a1+an=2*a[(1+n)/2]这里方括号
An=nBn-nBn-1,数列收敛必有极限.对于任意给定的ε1,存在N1使得,A为极限Bn=A+α;对于任意给定的ε2,存在N2使得Bn-1=A+β取N=max{N1,N2}使得An=n{α+(-β)
a(n+1)+b(n+1)=1,b(n+1)=(1-an)/(1-an²)=1/(1+an),a(n+1)+1/(1+an)=1,a(n+1)an+a(n+1)+1=1+an,a(n+1)a
分子分母同时乘以1/an