抛物线y^2=2x的焦点F,过点M(5 2,0)的直线与抛物线交于A,B两点
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 05:53:39
你要找最简便的方法,还是求导最快用判别式计算起来不好算设切点为A(x1,y1)x=y^2/4x'=y/2(x1+n)/y1=y1/2(y1/2是斜率的倒数)y1^2=2x1+2n4x1=2x1+2nx
抛物线X^2=4Y的焦点f(1,0)设a(x1,y1)b(x2,y2)弦ab的中点M(x,y)x1^2=4y1,x2^2=4y2k=(y1-y2)/(x1-x2)=(x1+x2)/4=2x/4=x/2
1)A(m/2,m),B(m/2,-m)|AB|=±2m=6m=±3抛物线的标准方程:y^2=±3x2)点P(-5,2倍根号5)到焦点的距离是6√[(p/2+5)^2+(2√5)^2]=6(p/2+5
分析:高是不变的,为OF=1.使S△MON最小,既使MN最小.当MN垂直于X轴时,MN最小,MN=4.所以三角形MON的面积最小值是=1/2*1*4=2
答:(1)抛物线y^2=4x的焦点F为(1,0),准线为x=-1,AB直线为:y-0=1*(x-1),即:y=x-1代入抛物线方程整理得:x^2-6x+1=0根据韦达定理:x1+x2=-b/a=6,x
F(1,0),准线:x=-1.设A(x1,y1),则AF=x1+1=2,x1=1,∴AF:x=1,∴BF=AF=2.
解据题意抛物线焦点为(1,0)当过焦点的直线斜率不存在时,直线方程为x=1则x1=1,x2=1,y1=2,y2=-2y1y2/x1x2=-4当直线斜率存在时,设为k则直线方程为y=k(x-1)那么y1
(1)F(1,0)AB过F点设直线AB:x=my+1设A(x1,y1),B(x2,y2)x=my+1代入y^2=4x得y^2-4my-4=0△AOB面积=1/2*OF*|y1-y2|=1/2*√[(y
1.设A、B、G坐标为(x1,y1)(x2,y2)(x3,y3)L为y=kx-k(k≠0)3x3=x1+x23y3=y1+y2将直线方程代入抛物线方程得:ky^2-4y-4k=04(x1+x2)=y1
焦点为(1,0)焦距为1所以都为2再问:焦点不是2,0吗?再答:不是,Y的平方=2PX焦点为(p,0)现在2P等于4所以要除4所以为(1,0)所有y的平方=aX焦点都为(a/4,0)再问:为什么都为2
面积为4乘以根号2,.设x=ky+1,代入抛物线方程PQ可用k表示,求得k的平方为1.面积就出来了我做了,你也要做一下哦有问题,可以问我
答:抛物线y^2=2px(p>0)的焦点F为(p/2,0)直线x-my+m=0经过焦点:p/2-0+m=0,m=-p/2再问:好聪明啊,谢谢!
如图 21题http://www.gaokao750.cn/Files/adminfiles/wanglei/Resource/%B8%DF%BF%BC%CA%D4%BE%ED%BF%E2/
焦点F(0,1)A(x1,y1)B(x2,y2)设直线方程y=kx+1代入x^2=4yx^2-4kx-4=0x1+x2=4k中点的横坐标x=2kk=x/2y1+y2=k(x1+x2)+2=2k^2+2
F(1,0)由于AB不可能平行y轴,可设AB:ky=x-1(x-1)^2=y^2k^2=4xk^2x^2-(2+4k^2)x+1=04=x1+x2=2+4k^2k=根号2/2x^2-4x+1=0|x1
设直线的斜率为k则直线的方程为y=kx-1同时设直线与抛物线的交A、B点坐标分别为(x1,y1)(x2,y2)A、B中点为(x0,y0)显然:x0=(x1+x2)/2yo=(y1+y2)/2同时有x1
数据有没有给错?我没算出来.不过方法可以给你的你设AB所在的线为Y=AX+B带入题中给的(根号3,0)这个点我先设为Q因为FB等于2根据“抛物线上的一点到焦点的距离等于到准线的距离”所以B到准线等于2
焦点F(1,0)AB的直线方程为y=x-1x²-6x+1=0x1+x2=6y1+y2=x1+x2-2=4线段AB的垂直平分线所在的直线方程y=-(x-3)+2=-x+52)AB的长度L=|x
焦点F(1,0),准线为:x=-1,设A(x1,y1),B(x2,y2)AB=AF+BF由抛物线的性质,AF=x1+1,BF=x2+1所以,AB=x1+x2+2所以,直线方程为:y=x-1把y=x-1
/>y²=4x的焦点F(1,0),准线x=-1设A(x1,y1),B(x2,y2)利用抛物线的定义则|AF|=x1+1,|BF|=x2+1∴|AB|=x1+x2+2直线为y=tanθ(x-1