数列n 2的n次方的前n项和为

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 16:55:28
若数列{an}的前n项和为Sn=n2,则该数列的通项公式?

A.an=2n-1Sn=n^2Sn-1=(n-1)^2an=Sn-Sn-1=n^2-(n-1)^2=n^2-n^2+2n-1=2n-1

已知数列{an}的前n项和Sn=n2-48n,

解(1)a1=S1=12-48×1=-47…(2分)当n≥2时    an=Sn-Sn-1=n2-48n-[(n-1)2-48(n-1)]=2n-49…(5分)

已知数列{an}的前n项和为Sn=10n-n2.

(1)当n=1时,a1=S1=9,当n≥2时,an=Sn-Sn-1=10n-n2-[10(n-1)-(n-1)2]=11-2n,当n=1时,a1=9,满足an=11-2n,所以an=11-2n,n∈N

已知数列{an}的前n项和的公式为Sn=32n-n2,求数列{|an|}的前n项和Sn′.

当n=1时,a1=S1=32-1=31.当n≥2时,an=Sn-Sn-1=32n-n2-[32(n-1)-(n-1)2]=33-2n.当n=1时,上式也成立.∴an=33-2n.令an≥0,解得n≤3

已知数列{an}的前n项和Sn=25n-2n2.

(1)证明:①n=1时,a1=S1=23.②n≥2时,an=Sn-Sn-1=(25n-2n2)-[25(n-1)-2(n-1)2]=27-4n,而n=1适合该式.于是{an}为等差数列.(2)因为an

已知数列{an}的前n项和为Sn=n2+12

①当n=1时,a1=s1=32②当n≥2时,由an=sn-sn-1得an=(n2+n2)-[(n-1)2+12(n-1)]=2n-12又a1=32满足an=2n-12,所以此数列的通项公式为an=2n

已知数列{an}的前n项和Sn=n2−7n−8,

(1)当n=1时,a1=S1=-14;当n≥2时,an=Sn-Sn-1=2n-8故an=−14(n=1)2n−8(n≥2)(7分)(2)由an=2n-8可知:当n≤4时,an≤0,(8分)当n≥5时,

数列通项公式为an=1/n2+4n+3,则其前n项的和为?

an=1/(n+1)(n+3)=1/2*[1/(n+1)-1/(n+3)]所以Sn=1/2*[1/2-1/4+1/3-1/5+……+1/n-1/(n+2)+1/(n+1)-1/(n+3)]=1/2*[

已知数列an的通项公式为an=n2^n则前n项和sn=

Sn=1*2+2*2^2+3*2^3+4*2^4+……+n*2^n给此式左右乘以2得:2Sn=1*2^2+2*2^3+3*2^4+4*2^5+……+(n-1)*2^n+n*2^(n+1)第一个式子减第

已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4

(1)由已知Sn=n2,得a1=S1=1当n≥2时,an=Sn-Sn-1=n2-(n-1)2=2n-1所以an=2n-1(n∈N*)由已知,b1=a1=1设等比数列{bn}的公比为q,由2b3=b4得

已知数列{an}的前n项和Sn=n2+2n.

(I)a1=S1=3当n≥2时,an=Sn-Sn-1=n2+2n-[(n-1)2+2(n-1)]=2n+14,符合(II)设等比数列的公比为q,则b2=3,b4=5+7=12所以b1q=3b1q3=1

已知数列{an}的前n项和,Sn=n2+2n+1.

(I)当n=1时,a1=S1=4,当n≥2时,an=Sn-Sn-1=n2+2n+1-[(n-1)2+2(n-1)+1]=2n+1,又a1=4不适合上式,∴an=4,   

高中数学已知数列{an}的前n项和为Sn=n2+2n求解释

1,这第一题是常规解法,用Sn-S(n-1)=an,你可以试一下,上下一减,得an=2n+1但是因为S(n-1)包含了第n-1项,因为n-1必须得大于等于1,所以以上必须是再n>=2时候成立,你那个好

设数列{an}前n项和为Sn,数列{Sn}的前n项和为Tn,满足Tn=2Sn-n2,n∈N*.

(1)当n=1时,T1=2S1-1因为T1=S1=a1,所以a1=2a1-1,求得a1=1(2)当n≥2时,Sn=Tn-Tn-1=2Sn-n2-[2Sn-1-(n-1)2]=2Sn-2Sn-1-2n+

若数列(an)的前n项和为sn=3n次方

n=1时an=s1=3n≥2时an=Sn-Sn-1=3^n-3^(n-1)=2*3^(n-1)

数列一道错位相减的题求数列{n2的n次方}的前n项和Sn我这么做的.N=1时,SN=N(N+1)/2N不等于1时,SN=

a(n)=n*2^n,S(n)=a(1)+a(2)+a(3)+...+a(n-1)+a(n)=1*2+2*2^2+3*2^3+...+(n-1)*2^(n-1)+n*2^n,2S(n)=1*2^2+2

数列{1 +2的n-1次方}的前n项和为

数列{1+2的n-1次方}的前n项和为1×n+(1+2+2^2+.+2^(n-1))=n+(1-2^n)/(1-2)=n+2^n-1

数列n+2的n次方分之一的前n项和为

an=n+(1/2ⁿ)Sn=[(1+2+3+...+n]+[(1/2)+(1/2²)+.+(1/2ⁿ)]=n(n+1)/2+(1/2)[1-1/2ⁿ]/(