有旋转抛物面z=6-x²-y²与圆锥面z=√x² y²围成的体积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:55:46
重积分算体积求旋转抛物面z=x^2+y^2,三个坐标平面及平面x+y=1所围有界区域的体积.答案是1/6,我怎么觉得这图

在第一象限是封闭的,用曲面积分算,在xy平面的投影,二重积分(x²+y²)dxdy=∫从0到1dy∫从0到1-y(x²+y²)dx,答案就是1/6.

求旋转抛物面z=x^2+y^2-1 在点(2,1,4) 处的切平面方程及法线方程.

设F(x,y,z)=z-x^2-y^2+1那么F'(x)=-2xF'(y)=-2yF'(z)=1所以在点(2,1,4)处的法向量为(-4,-2,1)或(4,2,-1)法线方程为(x-2)/4=(y-1

大一高数题 求旋转抛物面z=x^2+y^2(0≤z≤4)在三坐标面上的投影.

令z=4得x²+y²=4,所以旋转抛物面z=x2+y2(0≤z≤4)在xOy面上的投影为x²+y²≤4.令x=0得z=y²,所以旋转抛物面z=x2+y

求旋转抛物面z=x²+y²;到平面x+y+z=1的最短距离.

空间点(x0,y0,z0)到平面Ax+By+Cz+D=0的距离为d=|Ax0+By0+Cz0+D|/√(A^2+B^2+C^2)设旋转抛物面z=x^2+y^2上的点为(x,y,z),则到平面x+y+z

求旋转抛物面z=x^2+y^2在点(1,2,5)切平面方程

令f(x,y,z)=x^2+y^2-z则f`x|(1,2,5)=2x|(1,2,5)=2f`y|(1,2,5)=2y|(1,2,5)=4f`z|(1,2,5)=-1|(1,2,5)=-1故这一点的法向

求旋转抛物面z=x^2+y^2与平面x+y-2z=2之间的最短距离?(详细)

抛物面上的任意一点(x,y,x^2+y^2)到平面的距离d=|x+y-2(x^2+y^2)-2|/根号6=2|(x-1/4)^2+(y-1/4)^2+7/8|/根号6,所以当x=y=1/4距离最短为7

这是书上一道例题:求旋转抛物面A:x²+y²=R²及B:x²+z²=R

既然是例题那是有答案的啊,为什么要来问?

求旋转抛物面z=x^2+y^2及平面z=1所围成的质量均匀分布的物体的形心

形心?质心?再问:质心就是形心‘没对啊答案不一样就是没步骤能再做一下吗?再答:复查了,我的计算没问题,你的答案是多少?再问:(0,0,2/3)再答:自变量、因变量,反了。括号里面应当是:根号z。再问:

高数二次积分题,计算立体体积:旋转抛物面z=x^2+y^2,柱面y=x^2及平面y=1,z=0围成的立体

根据对称性:V=∫(0,1)dy∫(0,√y)(x^2+y^2)dx=44/105再问:能详细讲下么,答案是88∕105

怎样计算旋转抛物面的面积?已知抛物面方程X*X+Y*Y=4fZ,Z的范围0~h

fZ是什么意思再问:f是一个常数,Z是变量再答:答案为16π*f*h²/3

如何用mathematica或者matlab画三维图形,例如旋转抛物面 x^2+z^2=60y ,(y,0,21.6).

No intention to get the reward. Just show how powerful&

用MATLAB画出球面x^2+y^2+z^2=8与旋转抛物面x^2+y^2=2z的交线

不知你是光要画图呢?还是要进行计算.他们的交线就是位于z=2的平面上半径为2的一个圆,给你花了一个,你看看吧:clearall;clc;zz=@(x,y)(x.^2+y.^2)/2;ezsurf(zz

计算由平面Z=0及旋转抛物面Z=1-X²-Y²所围成的立体的体积

旋转抛物面z=1-x^2-y^2与z=0(xoy平面)交线为一个半径=1的圆,方程为x^2+y^2=1,设该圆在第一象限部分与X轴和Y轴围成区域为D,根据对称性,V=4∫【D】∫(1-x^2-y^2)

设∑是由旋转抛物面z=x^2+y^2,平面z=0及平面z=1所围成的区域,求三重积分∫∫∫(x^2+y^2+z)dxdy

第一个是对的!其余两个都不对!错在:将x^2+y^2=z代入积分式.因为在立体内部x^2+y^2

旋转抛物面z=2(x?2+y?2)-3在点(1,-2,7)处的切平面方程是

法向量为(-4x,-4y,1)即该点的法向量为(-4,8,1)所以切平面为-4(x-1)+8(y+2)+(z-7)=04(x-1)-8(y+2)-(z-7)=0选A

计算立体的体积,其中立体由旋转抛物面z=x^2+y^2与平面2x-2y-z=1围成

换算成柱坐标方程抛物面z=x^2+y^2为z=ρ^2;平面2x-2y-z=1为z=2ρ(cosθ+sinθ)-1它们的交线为ρ^2=2ρ(cosθ+sinθ)-1→cosθ+sinθ=(1/2)(ρ+

旋转抛物面z=2-x^2-y^2与xy坐标面所围成的立体的体积

z=∫∫Dzdxdy,(D:x^2+y^2再问:请问能在写的详细一点吗?∫∫Dzdxdy中的Dz是什么意思?再答:D代表积分区域,z代表积分函数再问:∫(0,2π)dθ∫(0,√2)a(2-a^2)d

作出球面:x的平方+y的平方+z的平方=8与旋转抛物面:x的平方+y的平方=2z 的交线

联立方程组,消去(x平方+y平方),得z=2(易知0),把z=2代入第一个方程,得x平方+y平方=4,所以相交的曲线是:{x平方+y平方=4,z=2}(曲线在平面的投影是x平方+y平方=4的圆

计算三重积分fffzdxdydz,区域由旋转抛物面2z=x^2+y^2和平面z=1围成

∫∫∫ΩzdV=∫(0→1)zdz∫∫Dxydxdy=∫(0→1)z•π(2z)dz=2π•(1/3)[z³]|(0→1)=2π/3或∫∫∫ΩzdV=∫∫Dxydxd

x^2+y^2=z的图像怎么画,旋转抛物面

你可以分别令x=0,则y²=zy=0,则x²=z再答:再答:还有什么地方不是很明白再答:可以追问再问:恩,让我先看看再问:再问:那这个会吗?再问:图都画不出来再答:该不是在纸上画吧