E,F,G,H是菱形ABCD的边AB.BC
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:48:37
因为四边形ABCD为菱形所以AC垂直于BD又因为EH为中点所以EH与BD平行所以EH垂直于AC同理EF垂直于BD所以角FEH为直角同理其余三只角为直角所以四边形EFGH是矩形
∵E、F是AB,BC的中点所以EF=0.5AC且EF∥AC同理GH=0.5AC且GH∥AC,FG=0.5BD∴GH=∥EF,FG=EF∴EFGH是平行四边形∵FG=EF∴EFGH是菱形
连接AC,BD因为AD,CD,AC两两相交,所以,AD,CD,AC确定一个平面,又因为,H,G分别为AD,CD中点,所以,HG平行且等于1/2AC同理,EF平行且等于1/2ACEH平行且等于1/2BD
证明:∵E是AB的中点,G是AC的中点∴EG是△ABC的中位线∴EG=½BC,EG//BC∵H是BD的中点,F是CD的中点∴HF是△BCD的中位线∴HF=½BC,HF//BC∴EG
证明:∵E是AB的中点,G是AC的中点∴EG是△ABC的中位线∴EG=½BC,EG//BC∵H是BD的中点,F是CD的中点∴HF是△BCD的中位线∴HF=½BC,HF//BC∴EG
证明:因为ABCD是菱形,所以AB=DA,BC=CD且AC垂直BD,又因为EFGH为其各边中点,所以EF∥=AC∥=GH;EH∥=BD∥=FG;∠ABD+∠BAC=90,所以∠FEH=90,所以四边形
已经可以证明EFGH是平行四边形GH=1/2ADEF=1/2ADGH=EFGF=1/2BCEH=1/2BCGF=EHEFGH是平行四边形只需要满足BC=AD就可以使得GH=EF=GF=EH
证明:连接BD,AC.∵矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,∴AC=BD,∵EF为△ABD的中位线,∴EF=12BD,EF∥BD,又GH为△BCD的中位线,∴GH=12B
四边形EFGH是为矩形.证明:连接AC,BD.因为点H是AD中点,点E是AB中点,所以EH平行BD且EH=1/2BD.因为点F是BC中点,点G是DC中点,所以FG平行BD且FG=1/2BD.所以EH平
证明:∵E是AB中点,F是BC中点∴EF是△ABC的中位线∴EF=1/2AC同理可得FG=1/2BD,HG=1/2AC,EH=1/2BD∵AC=BD∴EF=FG=GH=HE∴四边形EFGH是菱形
∵EF∥AC∥GH,FG∥BD∥HE,又AC⊥BD,∴四边形EFGH是矩形,∴EFGH共圆.
证明:连接BD,AC.∵矩形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,∴AC=BD,∴EF=12AC,EF∥AC,GH=12AC,GH∥AC同理,FG=12BD,FG∥BD,EH=
1.AE=BE=CG=DG;AH=DH=BF=CF;角A、B、C、D都是直角,根据勾股定理,可以计算出EH、HG、GF、EF的长度,可知EH=HG=GF=EF,因此,EFGH是菱形.2.连接矩形的两条
证明:∵ABCD是菱形∴AC⊥BD即∠AOB=90°∵E是AB中点∴OE=1/2AB(直角三角形斜边中线等于斜边一半)同理OF=1/2BC∵AB=BC∴OE=OF同理可得OE=OF=OG=OH∴E,F
连接AC和BD∵E、F、G、H分别是AB、BC、CD、DA的中点∴EF=1/2AC,HG=1/2ACHE=1/2BD,FG=1/2BD∵ABCD是矩形∴AC=BD∴EF=HG=HE=FG∴四边形EFG
证明:如图.∵四边形ABCD是菱形,∴AC⊥BD即∠AOD=90°.∵H是AD的中点,∴OH=12AD.同理:OE=12AB,OF=12BC,OG=12CD.∵四边形ABCD是菱形,∴AD=AB=BC
四边形ABCD两对角线AC、BD相等
条件是BC=AD因为HE‖=1/2BC‖=GF,同理GH‖=EF,故EFGH为平行四边形,要使四边形EFGH是菱形,则EF=GH,故BC=AD
ABCD的面积=96因为,各边中点EFGH的面积=48因为BD=12cm,AC=16cm,所以EF=6,GF=8因为三角形EFG是直角三角形所以EG=10
因为在四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA的中点,所以EH是三角形ABD的中位线,EF是三角形ABC的中位线,即EH等于二分之一BD,EF等于二分之一AC,又因为AC=BD,所