求全体对称矩阵所成的向量空间的维数与一组基
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 03:03:32
表示为:abcbdecef只有6个数字在变化,让一个数是1,其余为0,即可得到基,由6个矩阵组成.再问:一般的规律是什么?n(n+1)/2吗?再答:是的
共有n(n+1)/2类!因为实数域上全体n阶对称矩阵组成的集合构成一个n(n+1)/2的线性空间,按照同构的原理,共有n(n+1)/2类!
楼主需要注意用法向量求出来的夹角不是二面角你所求的只是两个法向量的夹角不管是正还是负因为这涉及到二面角是锐角还是钝角你只需要用反三角函数表示就好余弦值为负那么向量夹角为π-arccos正arccos换
你的计算没问题,法向量与平面垂直,在解题时只需要方向而不需要大小(即不需要向量的长度)所以x+2y-(根号3)z=0x+2y-√3z=0-1x+0y+(根号3)z=0x=√3z令x=√3,则z=1y=
设平面方程为Ax+By+Cz+D=0,已知向量为a则平面法向量(垂直于平面)为:n1=(A,B,C)先由cosθ=|a.n1|/(|a|*|n1|)求出θ(a.n1为内积)则夹角为π/2-θ
以A为原点,分别以AB,AD,AA1为x,y,z轴建立直角坐标系O-xyz,不妨设AB=1则A(0,0,0),B(1,0,0),D1(0,1,1)∴向量BD1=(-1,1,1)∵底面ABCD的一个法向
V={A|A上三角矩阵}由于矩阵的加法与标量乘法性质,所以对线性运算性质是不证自明的.只要证明:对加法与标量乘法的封闭性1)A,B∈V,上三角矩阵+上三角矩阵仍然是上三角矩阵,故A+B∈V2)A∈V,
解:a11a^21a1aa111a+1a+12a+111aa^2r1-r3000a^2-11a1aa111a+1a+12a+111aa^2当a^2-1≠0时,两方程组无公共解,故不同解当a=1时,矩阵
设法向量n=(x,y,z),与平面内两条相交的直线分别相乘等于0,联立方程就可以得到法向量n
全体线性变换组成的向量空间,同构于全体矩阵组成的向量空间,所以是n^2维的.
没这个结论.反例A=[12;25],B=[1-1;-12]都是实对称可逆矩阵但AB=-13-38不是对称矩阵.再问:那么n阶实对称可逆矩阵集是不关于乘法封闭的?再答:对再问:谢谢老师。
这个问题分两步走.1你首先得说明W={X|X=AB-BA}是线性空间2W的维数为n^2-1其实呢,只要当你说明1后,2自然也就解决了说明1,你需要一个定理定理:方阵C能分解成AB-BA的形式,充分必要
首先,所有的对角阵之间是可交换的.齐次,任意一个矩阵A,若A可与所有的对角阵交换,可以证明A必是对角阵.而所有的对角阵的维数是n,基是第i个对角元是1,其余元素为0的对角阵,i=1,2,...,n.再
一个基是diag(1,0,...,0),diag(0,1,0,...0),.,diag(0,0,0,...,1)维数为n
全体可逆矩阵是否构成实数域上的线性空间?不是.因为逆对矩阵的加法不封闭,即可逆矩阵的和不一定是可逆矩阵.全体N阶矩阵可构成实数域上的线性空间.记εij为第i行第j列元素为1,其余都是0的n阶矩阵则εi
2维.主对角线上的元素为0.E_12,E_21为这个线性空间的一组基.
矩阵的行向量是空间的一组基,这句话意思是此矩阵为满秩矩阵,假设列向量不是一组基,那么至少有一向量可以被其他线性表出.这时可以进行列变换就会化成至少有一行全为0的矩阵,显然此矩阵的秩不是满秩的.矛盾所以
这个题选B,三阶矩阵可以设为(aij)3*3,总共有aij=aji三个等式,有9个未知数,3个等式,那么解空间的维度就是6
反对称矩阵主对角线上元全是0,aji=-aij所以反对称矩阵由其上三角部分唯一确定,故其维数为:(n-1)+(n-2)+...+1=n(n-1)/2令Eij为aij=1,aji=-1,其余元素为0的矩