求函数z=ln(1 x2 y2)当x=1,y=2时的全微分

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:01:04
求下列函数的全微分Z=1/2ln(1+x^2+y^2)要详细过程

Z=(1/2)ln(1+x²+y²)dz=(1/2)2x/(1+x²+y²)dx+(1/2)2y/(1+x²+y²)dy=x/(1+x&su

多元隐函数求导设x/y=ln(z/y),求z对x的导数,要详解,

x=ylnz-ylny两边对x求导z&x表示z对x求偏导1=y*(1/z)*(z&x)z&x=z/y=e^(x/y)其实你的这个问题不是隐函数求导,不过你这样问我就用隐函数求导方法来做了,如果有不清楚

设z=z(x,y)由方程x/z=ln(y/2)所确定的隐函数 求∂z/∂y,∂z/&

z=x/ln(y/2)z′(x)=1/ln(y/2)z′(y)=-x/ln(y/2)^2*(1/(y/2))*1/2=-2x/(y*ln(y/2)^2)

设z=z(x,y)由方程x/z=ln(y/z)所确定的隐函数 求∂z/∂y,∂z/&

x=z(lny-lnz)对x求导1=∂z/∂x*(lny-lnz)+z*(0-1/z*∂z/∂x)1=∂z/∂x(lny-lnz

已知函数z=z(x,y),且由方程x=z*ln/y表示,求dz

先问一下,ln/y是要表达什么意思?先不论题目,说明一下一般解法dZ=Zx*dx+Zy*dy(其中Zx表示Z(x,y)对x求偏导.)然后对“x=z*ln/y”使用隐函数求导法则,求出Zx与Zy,代入即

函数z=1/ln(x+y+1)的定义域

ln(x+y+1)≠0【它充当分式的分母,当然不能为0】也就是ln(x+y+1)≠0=ln1x+y+1≠1且x+y+1>0【对数的真数必须大于0】联合得到:x+y∈(-1,0)∪(0,+∞)

求函数Z=ln(x^2+y^2)的偏导数az/ax...和a^2z/ax^2

az/ax=2x/(x^2+y^2)a^2z/ax^2=2(-x^2+y^2)/[(x^2+y^2)]的平方再问:第二个。。。不是很懂诶。。教教我啊再答:第二个你就只是对第一个关于x求导数将y看作是常

多元函数的定义域z=ln(-x-y)+arcsin(y/x),求函数定义域

-x-y>0,且Iy/xl再问:再问:这个怎么写啊再答:提示:u是由u=f(x,y,z)及z=z(x,y)复合而成的x,y的函数,利用微分形式的不变性,du=f'xdx+f'ydy+f'zdz,其中d

函数z=ln[(x+1)y]的定义域为

(x+1)y>0(1)x+1>0且y>0,得到x>-1且y>0;(2)x+1

复合函数求导求x/z=ln(z/y)求z对x的偏导答案是什么

x/z=ln(z/y),求微分:(zdx-xdz)/z^2=y/z*(ydz-zdy)/y^2=(ydz-zdy)/(yz),∴yzdx-xydz=yzdz-z^2dy,∴z'=yz/(xy+yz)=

点(x1y1),(x2y2)在反比例函数y=k/x的图像上,当x1

由题意在y=k/x的图像上的两点(x1,y1)(x2,y2),当x1<x2<0,y1<y2,则可知,y=k/x的图像在第二象限,y随x增大而增大.所以k<0..

求函数的定义域,并画出定义域:z=ln根号下[x-(根号下y)]

z=ln√(x-√y)因为x-√y>0,所以x>√y≥0又y≥0,即x²>y≥0定义域x²>y≥0就是在第一象限画出从平面原点O出发向右上方的一条y=x²的抛物线,定义域

设函数z=x(x,y)由方程z=1+ln(x+y)-e^z确定,求zx(1,0),zy(1,0) 求隐函数的倒数

x=1,y=0代入方程:z=1+ln1-e^z,得:z=0.两边对x求偏导:∂z/∂x=1/(x+y)-e^z∂z/∂x,得:∂z/W

求下列各函数的定义域:1) z=ln(y^2-2x+1).2) z=1/√(x+y)+1/√(x-y)

1)y^2-2x+1>0,即:x0且x-y>0即:y>x且y>-x即定义域为上半平面由y=x,y=-x两射线围成的区域.

求下列函数的全微分u=ln(x^2+y^2+z^2)

u'x=2x/(x^2+y^2+z^2)u'y=2y/(x^2+y^2+z^2)u'z=2z/(x^2+y^2+z^2)du=2xdx/(x^2+y^2+z^2)+2ydy/(x^2+y^2+z^2)

求函数的全微分,z=ln根号(x^2+y^2+4)

z=1/2*ln(x^2+y^2+4)Z'x=1/2*1/(x^2+y^2+4)*(2x)=x/(x^2+y^2+4)Z'y=1/2*1/(x^2+y^2+4)*(2y)=y/(x^2+y^2+4)所

求函数u=ln(2x+3y+4z^2)的全微分du

对等式两边求全微分du=【1/(2x+3y+4z^2)】【2dx+3dy+8zdz】

求函数z=ln(3+x^2+y^2)当x=1,y=2时的全微分

全微分后=2x/(3+x^2+y^2)+2y/(3+x^2+y^2)=2/(3+1+4)+4/(3+1+4)=3/4