求曲线Y=4-X平方与X轴所围的图形面积,以及该图形绕X轴旋转的旋转体体积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 09:33:32
在区间【0,4】上,计算曲线y=4-x的平方与x轴,y轴以及x=4所围成的图形面积?

在区间【0,4】上,计算曲线y=4-x²与x轴,y轴以及x=4所围成的图形面积?面积S=【0,2】∫(4-x²)dx+∣【2,4】∫(4-x²)dx∣=[4x-(x

求曲线y=log(2,x)与曲线y=log(2,(4-x))以及x轴所围成的图形的面积.

答案为:log(2,x)从1到2时的积分的2倍.画图可知图形·关于直线x=2对称.所以可·求.

求由平面曲线:Y=X平方,Y=1所围图形的面积.

S=1-1/3=2/3这是一个定积分问题再问:你确定这是对的么再答:不好意思忘了×2了,左右两部分再问:额你在写一次吧再答:我给你说详细点再问:恩呢麻烦你发到QQ1013944362

求由曲线y=2-x平方与x轴所围成的平面图形的面积

y=2-x²=0解得x=±√2求面积,就是积分所以=8√2/3

求由曲线y=x平方与x=3所围成的平面图形绕x轴旋转一周形成的旋转体的体积.急

应是y=x^2、x=3、y=0所围成的平面图形x轴旋转一周形成的旋转体的体积.设该体积为V,则V=∫(0→3)πy^2dx=π∫(0→3)x^4dx=)π/5)x^5|x=0→3=243π/5.

求由曲线y=x平方,x=y平方,所围成的图形绕x轴旋转产生的旋转体体积

x轴旋转体积=π∫{0,1}(x-x^4)dx(∫{0,1}表示从0到1积分)=π(x²/2-x^4/5){0,1}=3π/10.

求由曲线y=x平方与y=x所围的成图形的面积

1,y=x²与y=x的交点横坐标为x=0和x=1,则所围的成图形的面积S=∫(0~1)(x-x^2)dx=(1/2*x^2-1/3*x^3)|(0~1)=1/2-1/3=1/62,所围的成图

求曲线Y平方等于2X与X加Y等于4所围成图形的面积

y²=2xx+y=4求公共x1=2,y1=2x2=8,y2=-4先求出曲线从x=0到2的积分,2ƒ√(2x)dx=16/3再计算直线与曲线从x=2到8的积分由于是曲线的下分支y=-

求曲线Y=X的三次方与Y=2X-X的平方所围成图形的面积?

联立y=x^2,y=x^3,解得:x=0,x=1,封闭图形面积=∫上1下0(x^2-x^3)dx=(x^3/3-x^4/4)|上1下0=(1/3-1/4)-0=1/12.定积分在求平面图形的面积上的应

求曲线y=2x平方与y=x所围成图形的面积

先求得交点O(0,0),A(0.5,0.5)求两线在交点下方与X轴围成的面积,用积分(为方便用S表示)S(2x^2)=2/3x^3=2/3(0.5)^3-0=1/12S(x)=1/2x^2=1/2(0

曲线y=8/X2与直线y=x及x=4所围成的封闭型面积------。 老师x2是表示x的平方,曲线是y=x平方分之8(不

解题思路:关键是求出y=8/X2的原函数。。。。。。。。。。。。。解题过程:

求由曲线y=4-x的平方y=x的平方-2x所围成的平面图形的面积.

设y=4-x^2,y'=x^2-2x,f(x)=y-y'令y=y'解得两方程的交点坐标为(2,0)与(-1,3)所以面积为:从-1~2对f(x)进行积分的值因为f(x)=4-2x^2+2x所以对f(x

求曲线y=1-x平方与x轴所围成的平面图形的面积s=

y与x交点为(-1,0)(1,0)则S=∫[-1,1]ydx=∫[-1,1](1-x^2)dx=x-x³/3[-1,1]=4/3

求由曲线y=4-x平方与x轴所围成的平面图形的面积

y=4-x^2=0,得x=-2,x=2与x轴所围成的平面图形的面积=∫(-2,2)(4-x^2)dx=(4x-x^3/3)|(-2,2)=(4*2-2^3/3)-(4*(-2)-(-2)^3/3)=1

求由曲线y=x的平方与直线y=2x+5所围成平面图形的面积

抛物线和直线的交点坐标为(1-√6,7-2√6),(1+√6,7+2√6),围成面积S=∫(1-√6→1+√6)(2x+5)dx-∫(1-√6→1+√6)x^2dx=(x^2+5x-x^3/3)(1-