求正交矩阵P,使P^-1AP成为对角矩阵,其中A为

来源:学生作业帮助网 编辑:作业帮 时间:2024/07/08 18:26:23
以知矩阵A=[0-11,-101,110],求正交矩阵P和对角矩阵A,使P^-1*AP=A

A是实对称矩阵,可以正交对角化按|A-λE|=0,求得λ=0,0,3求出对应的特征向量:[10-1],[01-1],[111]特征向量已经正交,对其进行标准化[1/√20-1/√2][01/√2-1/

线性代数疑问三阶实对称阵每行元素和都等于二,且R(2E+A)=1,求正交阵P,使P-1AP为对角矩阵

因为A每行元素和都等于2所以2是A的特征值,a1=(1,1,1)^T是相应的特征向量.又因为R(2E+A)=1,所以-2是A的2重特征值.由于实对称矩阵的属于不同特征值的特征向量正交所以属于特征值-2

线性代数习题求解三阶实对称阵每行元素和都等于二,且R(2E+A)=1,求正交阵P,使P-1AP为对角矩阵

求正交阵P,即求A的特征值向量三阶实对称阵每行元素和都等于二即A(1,1,1)T=(2,2,2)T所以A的一个特征值是2,对应的特征值向量是a1=(1,1,1)T又R(2E+A)=1,所以,2E+A有

已知A=(2 0 4 0 5 0 4 0 2) ,求一正交矩阵P,使p^1AP 成为对角矩阵.

101010-101求出来直接正交,都不用正交化

A=0 -1 1 -1 0 1 1 1 0(一个三阶矩阵),求一个正交矩阵P使P^-1AP=B为对角阵.特征值为2时基础

2不是A的特征值-2是A的特征值当齐次线性方程组只有零解时一定某个地方计算有误需检查特征值,系数矩阵,初等变换的过程再问:-x-11-1-x1=-x^3+3x-2=-(x-1)^2(x+2)--!哦我

A=0 -1 1 -1 0 1 1 1 0(一个三阶矩阵),求一个正交矩阵P使P^-1AP=B为对角阵.我基础解系总是算

先求得特征值的特征向量:-2{-1,-1,1}=a11{1,0,1}=a21{-1,1,0}=a3将它们正交化得a1->b1={-1/√3,-1/√3,1/√3},a2->b2={1/√2,0,1/√

老师您好,已知0是矩阵A=[1,0,1;0,2,0;1,0,a]的特征值,求:a的值和正交矩阵P使P^-1AP为对角矩阵

因为0是A的特征值所以|A|=2(a-1)=0所以a=1A=101020101|A-λE|=-λ(2-λ)^2A的特征值为0,2,2(A-2E)X=0的基础解系为a1=(0,1,0)',a2=(1,0

对下列实对称矩阵A,求一个正交矩阵P,使P^-1AP=P^TAP=D为对角矩阵 2 0 0 0 -1 3 0 3 -1

|A-λE|=2-λ000-1-λ303-1-λ=(2-λ)[(-1-λ)^2-3^2]=-(2-λ)^2(4+λ).所以A的特征值为:2,2,-4.(A-2E)X=0的基础解系为:a1=(1,0,0

设实对称矩阵A=1 -2 0 -2 2 -2 0 -2 3 求正交矩阵P,使P^-1AP为对角矩阵.

做特征值分解就好了.求A的特征值,即det(A-λI)=0,可得λ=5,2,-1所以,A-5I=-4-20-2-3-20-2-2所以,特征向量为c(1,-2,2),取长度为1的,得(1/3,-2/3,

线性代数问题对实对称矩阵A,求一正交矩阵P,使P∧-1AP为对角形矩阵.矩阵是3.2.4 2.0.2 4.2.3

具体细节有很多的,可能也没有人会有耐心解完这样一道题目,但是我可以给你方法,至于计算要靠你自己了,我是数学专业的,第一、先求出矩阵的特征多项式第二、求出特征多项式的特征值第三、求出对应特征值的线性无关

设A= ,求一个正交矩阵P,是的P^(-1)AP为对角阵

λE-A=λ-2000λ-10-1λ|λE-A|=λ^2(λ-2)-(λ-2)=(λ+1)(λ-1)(λ-2)所以矩阵A的特征值为λ1=-1,λ2=1,λ3=2当λ1=-1时,方程组(λE-A)X=0

,求正交矩阵 P 使 P A-1 P 为对角阵

题目不完整再问:不好意思啊,复制的时候漏掉了,A=(上1-20;中-22-2;下0-23)再答:解:|A-λE|=λ-1202λ-2202λ-3r1-(1/2)(λ-1)r2-r30-(1/2)(λ-

求一个可逆矩阵P,使P^(-1)AP为对角矩阵时,什么时候P要求是正交矩阵?

求一个可逆矩阵P,使P^(-1)AP为对角矩阵时,并不要求P是正交矩阵,但可以要求P是正交矩阵.

线性代数 求矩阵正交p

A的特征值为1,5,-1(A-E)x=0的基础解系为a1=(1,-1,0)^T(A-5E)x=0的基础解系为a2=(1,1,1)^T(A+E)x=0的基础解系为a3=(1,1,-2)^T单位化后构成正

正交矩阵是不是单位矩阵,求正交矩阵P使A与对角矩阵相似,为什么单位化

正交矩阵不一定是单位矩阵,但单位矩阵是正交矩阵矩阵正交的充分必要条件是其列向量是标准正交向量组,故必须正交化,单位化

设矩阵A=[422;242;224],1、求矩阵A的所有特征值与特征向量;2、求正交矩阵P,使得P-1AP为对角矩阵.

|A-λE|=(8-λ)(2-λ)^2A的特征值为2,2,8(A-2E)x=0的正交的基础解系为a1=(1,-1,0)^T,a2=(1,1,-2)^T所以属于特征值2的全部特征值为k1a1+k2a2,

以知矩阵A=[111,111,111],求正交矩阵P和对角矩阵A,使P^-1*AP=A

A是实对称矩阵,可以正交对角化按|A-λE|=0,求得λ=0,0,3求出对应的特征向量:[10-1],[01-1],[111]特征向量已经正交,对其进行标准化[1/√20-1/√2][01/√2-1/

对下列实对称矩阵A,求一个正交矩阵P,使P^-1AP=D为对角矩阵 矩阵A为(1221) (上面12,下面21)

|A-λE|=1-λ221-λ=(1-λ)^2-2^2=(3-λ)(-1-λ)A的特征值为3,-1A-3E=-222-2-->1-100(A-3E)X=0的基础解系为a1=(1,1)'A+E=2222