求证tanαtan2α除以tan2α-tan阿尔法
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 03:42:06
tan2α=tan[(α+β)+(α-β)]=[tan(α+β)+tan(α-β)]/[1-tan(α+β)(α-β)]=-4/7tan2β=tan[(α+β)-(α-β)]=[tan(α+β)-ta
证明:∵sinβ=cos(α+β)sinα=(cosαcosβ-sinαsinβ)sinα=sinαcosαcosβ-sin²αsinβ∴(1+sin²α)sinβ=sinαcos
tanα=三分之一倍角公式:tan2α=2tanα/[1-(tanα)^2]=2*1/3/[(1-(1/3)^2]=3/4
这需要用到万能公式tanα=tan[2*(α/2)]=2tan(α/2)/[1-tan(α/2)^2]=[2tan(α/2)]/[1-(tanα/2)^2]tan(a+π/4)=(tana+1)/(1
tan2α=1/32tana/(1-tana^2)=1/36tana=1-tana^2tana^2+6tana-1=0tana=[-6+/-根号(40)]/2=-3+/-根号10
tan@*tan2@/(tan2@-tan@)=1/[(tan2@-tan@)/(tan2@*tan@)]=1/[1/tan@-1/tan2@]=1/[1/tan@-(1-tan^2@)/(2*tan
cot2^nα-tan2^nα=cos2^nα/sin2^nα-sin2^nα/cos2^nα=[(cos2^nα)²-(sin2^nα)²]/[sin2^nαcos2^nα]=c
(1+tan2α)/(1-tanα)=2010=>{1+2tanα/[(1-tanα)^2]}/(1-tanα)=1-(tanα)^2+2tanα=2010(1+tanα)=>2009+(tanα)^
∵sin²γ=sin²α-sinαcosαtan(α-β)①∴cos²γ=1-sin²γ=1-[sin²α-sinαcosαtan(α-β)】=1-s
证:2sinβ/(cosα+cosβ)=[(sinα+sinβ)-(sinα-sinβ)]/(cosα+cosβ)=(sinα+sinβ)/(cosα+cosβ)-(sinα-sinβ)/(cosα+
(1)cosα=1/7,因为0<α<π/2,所以sinα=√(1-cosα)=√[1-(1/7)]=4√3/7所以tanα=sinα/cosα
tan(α+π/4)+tan(α+3π/4)=(tanα+tanπ/4)/(1-tanαtanπ/4)+(tanα+tan3π/4)/(1-tanα+tan3π/4)=(tanα+1)/(1-tanα
tan(2α-α)=(tan2α-tanα)/(1+tanαtan2α),tanαtan2α=(tan2α-tanα)/tanα-1tan2αtan3α=(tan3α-tan2α)/tanα-1┄┈┈
已知tan(α+β)=1/3,tan2β=-2;求tan2α的值tan[2(α+β)]=2tan(α+β)/[1-tan²(α+β)]=(2/3)/(1-1/9)=3/4tan2α=tan[
tan(α+2α)=tan(3α)=tan(3·π/9)=tan(π/3)=√3又tan(α+2α)=[tanα+tan(2α)]/[1-tanα·tan(2α)]因此[tanα+tan(2α)]/[
tan2α=tan(α+β+α-β)=[tan(α+β)+tan(α-β)]/[1-tan(α+β)tan(α-β)]=8/(1-15)=-4/7tan2β=tan[(α+β)-(α-β)]=)=[t
知识:tan(a+b)=(tana+tanb)/(1-tanatanb)原式=tan2a[tan(π/6-a)+tan(π/3-a)]+tan(π/6-a)tan(π/3-a)=tan2a*tan(π
用正弦和余弦的二倍角公式tan2a=sin2a/cos2a=2sinacosa/(cosa^2-sina^2)=2tana/(1-(tana)^2)(上下同时除以(cosa)^2)
tan(α-β)=sin2β即(tana-tanβ)/(1+tana*tanβ)=2sinβcosβ/(sinβsinβ+cosβcosβ)=2tanβ/(1+tanβ*tanβ)得tana=(2(t
tanα-1/tanα=sinα/cosα-cosα/sinα=(sin²α-cos²α)/(sinαcosα)=-cos2α/(1/2sin2α)=-2cos2α/sin2α=-