f(x)=xln(2-x
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 19:38:37
f(x)=∫xln(1+x^2)dx=1/2∫ln(1+x^2)d(1+x^2)=1/2*(1+x^2)[ln(1+x^2)-1]+C(C为积分常数)f(x)过点(0,-1/2),以此点代入上式得,C
1.当x>0时,-x0得x>1/ef'(x)
f(x)是g(x)的高阶无穷小.ln(1-x²)~-x²,所以f(x)~-3x³,g(x)=sin²x~x²再问:那么麻烦再问一下,这种ln(1-x&
f(3)=3*ln1-3=-3
定义域(0,+∞)f'(x)=1+lnx令f'(x)=0得x=1/ef''(x)=-1/x,f''(1/e)+∞}xlnx=+∞表明函数没有水平渐近线;lim{x->0+}f(x)=lim{x->0+
答:∫ xln(x∧2+1)dx=(1/2) ∫ ln(x^2+1) d(x^2+1)=(1/2)*(x^2+1)*[ln(x^2+1)-1]+C再问:���˵
对数有意义,x-2>0x>22
由题设条件可知limf(x)存在,不妨设limf(x)=A,则f(x)=xln(2-x)+3x^2-2A注意到常数的极限是它本身,所以对上式取极限可得A=limf(x)=1*0+3-2A解得limf(
lim(x->0)(x-sinx)/[xln(1-ax²)]=lim(x->0)(x-sinx)/[x·(-ax²)]=-1/alim(x->0)(x-sinx)/[x³
由已知f(x)在[0,1]上连续,在(0,1)上可导.且f(0)=f(1)=0f'(x)=ln(2-x)-x/(2-x)它在[0,1]上连续,且f'(0)*f'(1)=(ln2)*(-1)=-ln2
y=x(lnx)^3y'=x'(lnx)^3+x*[(lnx)^3]'=(lnx)^3+x*3(lnx)^2*(lnx)'=(lnx)^3+3x(lnx)^2*1/x=(lnx)^3+3(lnx)^2
解 (1)f(x)的定义域为(0,+∞),f′(x)=ln x+1,…(2分)令f′(x)=0,得x=1e,当x∈(0,+∞)时,f′(x),f(x)的变化的情况如下:x(0,1e)1e(1
【(lnx-1)/(lnx²)】'=[1/lnx-1/(lnx)²]'=[(lnx)^(-1)-(lnx)^(-2)]'=(-1/x)(lnx)^(-2)+(1/x)2(lnx)^
F’(X)=1×ln(1+X)+X×1/(1+X)-a=ln(1+X)+X/1+X-a
求导函数,可得f'(x)=ln(ex+1)-xex+1=1ex+1[exln(ex+1)+ln(ex+1)-lnex]又因为当x∈[-t,t]时,ex+1>1>0,又因为ln(ex+1)-lnex>0
以下答案.望楼主思考一番,自己下笔,我的答案仅供参考,祝楼主学习愉快.
题目不完整.缺x趋向?
只需证明x>0时1/(x+1)g(0)=0所以ln(1+t)>t/(1+t)1/x>0则ln(1+1/x)>x/1+x
f(x)=1+xln[x+√(x^2+1)]-√(x^2+1)f'(x)=ln[x+√(x^2+1)]+x/√(x^2+1)-x/√(x^2+1)=ln[x+√(x^2+1)]f'(-x)=ln[-x
∫xln(x+√(1+x^2))dx=1/2∫ln(x+√(1+x^2))dx^2=1/2ln(x+√(1+x^2))·x^2-1/2∫x^2dln(x+√(1+x^2))=1/2*x^2*ln(x+