g(x)=max{x lnx,-x^2 (a^2-1 2)x 2a^2 4a}
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 08:01:53
对f(x)求导,导数为lnx+1,当导数大于0,即x小于1/e单调递增,当导数为0,即x=1/e,有极大值-1/e,当导数小于0,即x小于1/e,单调递减.
f'(x)=(xlnx)'=lnx+1当1≤x≤3时lnx+1>0,即f(x),单调增加所以f(x)在[1,3]上的最小值为f(1)=0要使g(x)=-x^2+2ax-3在[1,3]上单调增加因为它的
∵f(x)=-xlnx+ax,∴f'(x)=-lnx+a-1∵函数f(x)=-xlnx+ax在(0,e)上是增函数∴f'(x)=-lnx+a-1≥0在(0,e)恒成立∵y=-lnx是(0,e)上的减函
(1)当a=2时,f(x)=2x+xlnx,f′(x)=−2x2+lnx+1,f(1)=2,f'(1)=-1,所以曲线y=f(x)在x=1处的切线方程为y=-x+3;(4分)(2)存在x1,x2∈[0
设h(x)=f(x)-g(x)=xlnx-2x+3(定义域x>0)求导h'(x)=lnx+1-2=lnx-1令h'(x)=0得x=e,又二阶导数h''(x)=1/x>0即h(e)为最小值,h(x)>=
2)恒成立就是g(x)的最大值,小于f(x)的最小值,对G(x)求导函数,判定极大值时是a的关系式,这个小于f(x)的最小值.3)还是求导函数,假设F(X)=前面的式子,求导函数后,利用坐标系,判定图
(1)f'(x)=lnx+1,令其等于0,得x=1/e,所以f(x)减区间(0,1/e),增区间(1/e,无穷),当t∈(0,1/e]时,最小值为f(1/e)=-1/e,当t∈(1/e,无穷)时,最小
①函数的定义域为(-1+∞).令f'(x)=1/(1+x)-1=0得x=0.在x=0附近,f'(x)由左正到右负,故函数f(x)有最大最值为f(0)=0.②设F(x)=g(a)+g(x)-2g(a+x
①函数的定义域为(-1+∞).令f'(x)=1/(1+x)-1=0得x=0.在x=0附近,f'(x)由左正到右负,故函数f(x)有最大最值为f(0)=0.②设F(x)=g(a)+g(x)-2g(a+x
(Ⅰ)f(x)的定义域为(0,+∞),f(x)的导数f'(x)=1+lnx.令f'(x)>0,解得x>1e;令f'(x)<0,解得0<x<1e.从而f(x)在(0,1e)单调递减,在(1e,+∞)单调
(Ⅰ)∵f(x)=xlnx,∴f′(x)=1+lnx,x>0,由f′(x)=1+lnx<0,可得0<x<1e,f′(x)=1+lnx>0,可得x>1e,∴函数f(x)的减区间为(0,1e),增区间为(
(1)f'(x)=lnx+1可得lnx+1=0x=1/e此时f(x)最小f(x)=-1/e(2)对x>0可将不等式转化为2lnx+x+3/x≥a恒成立,所以要求出h(x)=2lnx+x+3/x的最小值
f(x)=xlnxg(x)=x^3+2ax^2+2当x>0,2f(x)0,g(x)+2-2f(x)>=0令F(x)=g(x)+2-2f(x)=x^3+2ax^2+4-2xlnx,其中F(0)=0F'(
2f(x)≥g(x),x∈(0,+∞),即2xlnx≥-x²+ax+x-3,ax≤2x·lnx+x²-x+3,a≤2lnx+x-1+3/x,x∈(0,+∞),令h(x)=2lnx+
g'(x)=3x²+2ax-1不等式2f(x)≤g'(x)+2即2xlnx≤3x²+2ax+1解集为P∵(0,+无穷)是P的子集∴x>0时,2xlnx≤3x²+2ax+1
对不起啊,老师说导数我没学,不可能一下做出这道题...老师说记h(x)=lnx-1/e^x+2/ex用导数的方法求单调性,求出最小值大于0就可以了.我开始以为是高一的函数题,想用换元做,走不出去..唉
求导,g’(x)=3x2+2ax-1g’(1)=2+2a=0(因为单调区间为(-1/3,1),故-1/3、1都为导函数0点)a=-1所以g(x)=x3-x2-x+2斜率k=g’(1)=0,切线方程为,
(1)当a=2时,f(x)=2x+xlnx,f′(x)=−2x2+lnx+1,∴f(1)=2,f′(1)=-1.∴y=f(x)在x=1处的切线斜率为-1;(2)存在x1,x2∈[0,2],使得g(x1
g(x)=xlnx-x²f(x)=xlnx-a(x-1),g‘(x)=lnx+1-a.当a≥2时,在[1,e]上恒有g‘(x)≤0,所以g(x)在区间[1,e]上单调递减,最小值为g(e)=