用二重积分计算xy=a^2,x y=5a 2所围成的图形的面积

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:38:55
用极坐标计算二重积分计算∫∫x/ydxdy其中D是由曲线x^2+y^2=2ay(x>=0,a为正实数)与y轴所围成的闭区

积分区域为半个圆域,于是考虑用极坐标.令x=rcost,y=rsint,于是积分域为

用二重积分计算体积 x+y+z=3 x^2+y^2=1 z=0

用极坐标被积函数(3-r(sint+cost))rt从0到2pi;r从0都1结果3pi

利用二重积分计算概率积分时,若记A=∫(0→a)e^(-x^2)dx

A的平方=∫(0→a)e^(-x^2)dx乘以∫(0→a)e^(-x^2)dx然后,你应该知道积分和所积的变量无关,例如:∫xdx和∫ydy是一样的.上个式子我们把第二个里面的x换成y所以:A的平方=

利用二重积分的几何意义计算二重积分.∫∫(b-Sqrt(x^2+y^2))dσ,D:x^2+y^2≤a^2,a>0

分成两部分计算:∫∫bdσ表示一个圆柱的体积,圆柱的底圆为x²+y²≤a²,高为b,因此体积为:πa²b∫∫√(x²+y²)dσ表示一个圆柱

计算二重积分∫∫(X/1+XY)dxdy,D=[0,1]*[0,1]

【数学之美】团队为你解答,如果解决问题请采纳.

答案是xy.我也知道是先设积分为常数a,但是就是算不出来 设f(x,y)连续,且f(x,y)=xy+2(二重积分符号D)

这个题目其实并不需要计算,如题主所言,先两边在D内积分,设积分为常数a,则等式化为a=积分xy+2a*PI(圆周率),现在需要知道的就是中间对xy的积分,而积分趋于是关于x轴对称的,所以不需计算就可以

二重积分问题 (1)计算∫∫根号下(y^2-xy) dxdy,区域D={y=x,x=0,y=1} (2)区域D={(X,

∫∫根号下(y^2-xy)dxdy=∫(0,1)[∫(0,y)根号下(y^2-xy)dx]dy=∫(0,1)[∫(0,y)(-y)*y根号下(1-x/y)d(1-x/y]dy=∫(0,1)[∫(0,y

计算二重积分∫∫(D)3xy^2dxdy,其中D由直线y=x,x=1及x轴所围成区域

积分区域:0≤x≤1,0≤y≤x∫∫3xy^2dxdy=3∫xdx∫y^2dy=3∫x[y^3/3]dx=3∫x*x^3/3dx=∫x^4dx=x^5/5=1/5

怎么用二重积分的几何意义确定二重积分∫∫(a^2-x^2-y^2)^0.5 dxdy,其中D:x^2+y^2=0,y>=

被积函数z=√[a²-x²-y²],积x²+y²+z²=a²的上半个球面.注意D:x^2+y^2=0,y>=0∫∫(a^2-x^2

设区域D={(x,y)|x²+y²≤1,x≥0},计算二重积分I=∫∫(1+xy)/(1+x

原式=∫(-π/2,π/2)dθ∫(0,1)[(1+r²sinθcosθ)/(1+r²)]rdr(极坐标变换)=1/2∫(-π/2,π/2)dθ∫(0,1)[(1+rsinθcos

利用二重积分求体积利用二重积分求z=9-x^2-4y^2与xy平面围成的立体的体积,

楼上错了z=9-x^2-4y^2与xy平面围成的立体即z=9-x^2-4y^2>=0x^2+4y^2

计算二重积分xy^2dxdy,其中D是由圆周x^2+y^2=4及y轴所围成的右半闭区间.

∫∫xy²dxdy=∫dθ∫(rcosθ)*(rsinθ)²*rdr(应用极坐标变换)=∫(cosθsin²θ)dθ∫r^4dr=∫sin²θd(sinθ)∫r

∫∫(x^2/y^2)dxdy,其中D为直线y=x,x=2和双曲线xy=1所围成的区域,计算二重积分.

三个交点是(1,1),(2,2)和(2,1/2),积分区域是1

计算二重积分、∫∫[D](x/y^2)dxdy,其中D是曲线y=x,xy=1及x=2围成

原式=∫<1,2>dx∫<1/x,x>(x/y²)dy=∫<1,2>x(x-1/x)dx=∫<1,2>(x²-1)dx=2³

计算二重积分z=∫(1,-1)∫(1,0)(e^(xy)-2xy)dxdy 用MATLAB程序编写

可以使用符号函数,比如:%Bylyqmathclc;clearall;closeall;symsxyeq=exp(x*y)-2*x*y;z=int(int(eq,x,1,0),y,-1,1);vpa(

∫∫(x^2+y)dxdy,其中D为直线y=x,x=2和双曲线xy=1所围成的区域, 计算二重积分.

∫∫(D)(x²+y)dxdy=∫(1→2)dx∫(1/x→x)(x²+y)dy=∫(1→2)[x²y+y²/2]|(1/x→x)dx=∫(1→2)[x