直径AB=12,圆上两点c,D,直线CD交AB于点E,AE=2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 04:35:10
如图,AB为圆O的直径,C、D是半圆上的两点,且AC=CD=DB,AB=10cm,求AC的长兵证明CD平行于AB

证明:连接C、O;连接D、O因为AC=CD=DB,AO=CO=DO=BO所以△AOC全等于△COD全等于△DOB所以∠AOC=∠COD=∠DOB=60°所以△AOC、△COD、△DOB都是等边三角形所

如图 AB是⊙O的直径 点C、D为圆上两点,且弧CB=弧CD,CF⊥AB于点F,CE⊥AD的延长线于点E.

∵弧CB=弧CD∴CD=BC∠CAD=∠CAB又因为CE⊥AECF⊥AB∴CD=CF(角平分线上的点,到角两边的距离相等)∴Rt△CED≌Rt△CFB∴DE=BF(2)利用在直角三角形中30°角所对的

如图所示,AB是⊙O的弦(非直径),C、D是AB上的两点,并且AC=BD.

证明:过O作OE⊥AB于E,则AE=BE,(4分)又∵AC=BD,∴CE=DE.∴OE是CD的中垂线,(6分)∴OC=OD.      &n

已知 如图 ab是圆o的直径点c d为圆上两点 且弧cb=弧cd cf⊥ab于f ce⊥ad交ad的延

第一题:连接AC∠ABC=∠EDC---同一圆弧的圆周角相等.因为cb=cd,cf⊥ab于f,ce⊥ad交ad的延长线于点eDE=DC*COS∠CDEBF=BC*COS∠ABC所以DE=BF(2)证明

在圆O中,AB为直径,C、D为圆O上的两点,且C、D在AB两侧,OC⊥AB,求证:CD平分∠ACB

如图:∠AOC=∠BOC=90º∠ADC=1/2∠AOC∠BDC=1/2∠BOC∴∠ADC=∠BDC∴CD平分∠ADB

1.在圆O中,C.D是直径AB上两点,且AC=BD,MC⊥AB,ND⊥AB,M,N在圆O上

1.(1)证明的题干你可能错了,不可能相等的,应该是弧AM吧,连接OM和ON,可以证出三角形MCO和三角形NDO全等,则角MOC=角NOD,则两个弧的长度相等(2)成立,OM=2OC,则角AOM=角N

如图 AB是圆直径C,D是圆O上两点 且AC=CD

(1)延长CO交圆于E,连接BE,那么BE=AC=CD易知BD//CE故BD//OC(2)COB面积=1/2*OC*OC高BCD面积=1/2*BD*BD高因为BD//OCBD高=OC高又COB面积=B

如图,ab是圆的直径,c、d是ab上两点且ac=cd=db=a厘米,求阴影部分的面积

你忘记了传图.再问:怎么传图啊?教我一下再答:先用屏幕截图,把要上传的图片保存了,然后再上传。

如图,AB是半圆O的直径,AB=4,C、D为半圆O上的两点,且AC=CD=1,求BD.

你能把图给我吗?是初三的吧再问:,。。。再答:我知道了我做的和下边那位的一样很麻烦的如果你是初三的那就这样做吧连接AD,OC交与E点,则角AEC=90度=∠CED可得方程组AE²+CE&su

已知AB是圆O的直径,C,D是半圆上两点,若AB=2R,BC=CD=2分之R,求AD的长

由于图我没看见所以也不知道哪条线连没连你就自己对着看吧连接点O和点C点B和点D交与H设AD=2a∵BC=DC且OC为半径∴OC⊥BD与H且H为BD中点∵O为AB中点∴OH‖AD且OH=1/2AD=a∵

AB是圆O的直径,C,D是圆O上的两点,且AB=4,AC=CD=1,求BD的长

【标准解答】连接AD,CO,AD和CO相交于E因为AC=CD,AO=DO所以四边形ACDO的对角线AD和CO互相垂直CE^2=AC^2-AE^2,EO^2=AO^2-AE^2,CE+EO=CO=2得A

在圆O中,C,D是直径AB上两点,且AC=BD,MC⊥AB,ND⊥AB,M,N在圆O上,求证

1由题很容易可以得出CO=DO连接MO,NO,MO=NO在ΔMCO和ΔNDO中,由勾股定理可以得出MC=ND所以ΔMCO≌ΔNDO所以∠MOC=∠NOD所以弧AM=弧BN(因为弧所对的圆心角相等,弧就

如图,在圆O中,C,D是直径AB上两点,且AC=BD,MC垂直AB

1由题很容易可以得出CO=DO连接MO,NO,MO=NO在ΔMCO和ΔNDO中,由勾股定理可以得出MC=ND所以ΔMCO≌ΔNDO所以∠MOC=∠NOD所以弧AM=弧BN(因为弧所对的圆心角相等,弧就

在圆o中,c,d是直径ab上两点 且ac=bd ,mc⊥ab nd⊥ab m,n在○o上若c,d分别为oa,ob 的中点

证明:连接ON、OM,因为ND垂直OB,且D为OB中点,所以由三角形三线合一可得到ON=BN,而在园中有ON=OB,所以三角形OBN为等边三角形;同理三角形OAM也为等边三角形.从而以得到AM=NB=

已知 如图 AB是⊙O的直径 点C、D为圆上两点,且弧CD=弧CD,CF⊥AV于点F

1.弧CB=弧CD,CB=CD∠CAE=∠CAF,CF⊥AB于点F,∠CFA=90°,CE⊥AD的延长线于点E,∠CEA=90°,∠ACE=90°-∠CAE,∠ACF=90°-∠CAF∠ACE=∠AC

已知ab是圆o的直径,p为ab上一点,c,d为圆上两点在ab同侧,且∠cpa=∠dpb,求证:c,d、p、o四点共圆

已知AB是圆O的直径,P为AB上一点,C,D为圆上两点在AB同侧,且∠CPA=∠DPB,求证:CDPO四点共圆延长直径AB,延长CD,相交于S.延长CP交圆O于M.延长DP交圆O于N.因为AB是直径,

如图AB是圆O的直径,C、D为圆上两点,CE⊥CD交AB于E,DF⊥CD交AB于F,求证:AE=BF

【图不正确,给你画个】证明:设DF交圆O于G,连接CG∵DF⊥CD,∠CDG=90º∴CG为圆O的直径,过点O∴∠COE=∠GOF∵CE⊥CD,DF⊥CD∴CE//CF∴∠E=∠F又∵OC=

AB是⊙O的直径 点C、D为圆上两点,且弧CB=弧CD,CF⊥AB于点F,

已知如图AB是⊙O的直径点C、D为圆上两点,且弧CD=弧CD,CF⊥AV于点F已知如图AB是⊙O的直径点C、D为圆上两点,且弧CB=弧CD,CF⊥AB于点F,CE⊥AD的延长线于点E.1.试说明DE=

AB是圆O的直径,C.D为圆上两点,CE垂直于CD交AB于E,DF垂直于CD交AB于F.求证AE=BF

楼上回答的是第一种情况:C、D在直径AB同侧.第二种情况:C、D在直径A、B两侧:这种情况较容易证明,∠ODF=∠OCE,边OD=OC,∠COE=∠DOF.△COE≌△DOF,因为OA=OB,所以AE