直线y=m与曲线y=2x 2,y=x 以e为底x的对数交于两点A,B
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:46:25
由y=x2y=x得交点坐标(0,0),(1,1),由y=x2y=2x得交点坐标(0,0),(2,4),…(2分)∴所求面积S为S=∫10(2x−x)dx+∫21(2x−x2)dx…(6分)=∫10xd
因为曲线y=X2(2为平方)关于直线y=x的对称曲线方程是它的反函数,所以曲线y=X2(2为平方)关于直线y=x+1的对称曲线方程就是原方程的反函数图象向上平移一个单位再向左平移一个单位,即为y=(x
设所求的直线方程为y=-3x+m,切点为(n,n3+3n2-1),则由题意可得3n2+6n=-3,∴n=-1,故切点为(-1,1),代入切线方程y=-3x+m可得m=-2,故设所求的直线方程为y=-3
分析:由题意可知曲线C1:x2+y2-2x=0表示一个圆,曲线C2:y(y-mx-m)=0表示两条直线y=0和y-mx-m=0,把圆的方程化为标准方程后找出圆心与半径,由图象可知此圆与y=0有两交点,
解方程组y=x2y=2x+3得交点横坐标x1=−1,x2=3,所求图形的面积为S=∫3−1(2x+3−x2)dx=∫3−1(2x+3)dx−∫3−1x2dx=(x2+3x)|3−1−x33|3−1=3
解(Ⅰ)分两种情况:1)y=x+by=−x2+2有惟一解,即x2+x+b-2=0在(-2,2)内有一解,由△=1-4b+8=0,得b=94,符合.2)直线过点(-2,0),得0=-2+b,得b=2,综
曲线C1:y=x2,则y′=2x,曲线C2:y=x3,则y′=3x2,直线l与曲线C1的切点坐标为(a,b),则切线方程为y=2ax-a2,直线l与曲线C2的切点坐标为(m,n),则切线方程为y=3m
将直线y=2x+m代入抛物线y=-x2+3x+4,得2x+m=-x^2+3x+4=>x^2-x+m-4=0△=1-4(m-4)=17-4m若m>17/4,则△17/4,则△>0,方程有两个不同的解,有
设切点为P(a,b),函数y=x3+3x2-5的导数为y′=3x2+6x切线的斜率k=y′|x=a=3a2+6a=-3,得a=-1,代入到y=x3+3x2-5,得b=-3,即P(-1,-3),y+3=
设切点为p(a,b),函数y=x3+3x2-5的导数为y′=3x2+6x,又∵与2x-6y+1=0垂直的直线斜率为-3,∴切线的斜率k=y′=3a2+6a=-3,解得a=-1,代入到y=x3+3x2-
设切点为p(a,b),函数y=x3+3x2-5的导数为y′=3x2+6x,又∵与2x-6y+1=0垂直的直线斜率为-3,∴切线的斜率k=y′=3a2+6a=-3,解得a=-1,代入到y=x3+3x2-
答:点(-1,0),y=x^2+x+1,该点不在曲线上设切点为(a,a^2+a+1)在曲线上y对x求导得:y'(x)=2x+1切线斜率k=y'(a)=2a+1所以:k=2a+1=(a^2+a+1-0)
当x≥0时,曲线方程为y29-x24=1,图形为双曲线在y轴的右半部分;当x<0时,曲线方程为y29+x24=1,图形为椭圆在y轴的左半部分;如图所示,由图可知,直线y=x+3与曲线y29-x•|x|
已知曲线C1:y=x2与C2:y=-(x-2)2.直线l与C1、C2都相切,求直线l的方程.[解析]设l与C1相切于点P(x1,x),与C2相切于点Q(x2,-(x2-2)2).对于C1:y′=2x,
解;EF值最大时,直线经过圆的中心,交点之间的距离为圆的直径,此时EF最大把曲线方程变化为(x+1)^2+(y-2)^2=5是圆的方程,圆心坐标为(-1,2),把圆心坐标代入直线方程得-1-2*2+m
(2)圆心为(1,2)圆心距直线为1/5倍根号5,因此半径的1故此m=4(3)画个图就出来了,式子太多不好说
(x-1)^2+(y-1)^2=1圆心(1,1),半径=1直线x/a+y/b=1bx+ay-ab=0圆心到切线距离=半径所以|b+a-ab|/√(a^2+b^2)=1(a+b-ab)^2=a^2b^2
由y=2−x2y=2x+2可得,x=0y=2或x=−2y=−2∴曲线y=2-x2与直线y=2x+2围成图形的面积∫0−2[2−x2−(2x+2)]dx=∫0−2(−x2−2x)dx=(−13x3−x2
设直线l的方程为y=kx+b,由直线l与C1:y=x2相切得,∴方程x2-kx-b=0有一解,即△=k2-4×(-b)=0 ①∵直线l与C2:y=-(x-2)2相切得