矩阵AB=E推出BA=E

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:04:38
线性代数书上的定义AB=BA=E.则AB互为逆矩阵.如果只写AB=E(或者BA=E) 能不能得出A是B的逆矩阵的结论?

当然能.假使A,B是同阶方阵,且满足AB=E.如果我们假设A的逆阵为C,则有AC=CA=E,由B=EB=(CA)B=C(AB)=CE=C,可知B=C,即B与C为同一矩阵,亦即B为A的逆阵,从而AB互为

证明:不存在任意n阶矩阵A,B,使得AB-BA=E

哪会有这样的证明题啊,不会是你自己闲着没事瞎想的吧这种题不就是取个例子就可以了吗?很简单啊,就取A=B=E,则AB-BA=0不等于E,不就完了吗?

已知矩阵E+AB可逆,求证E+BA也可逆

C=(E+AB)^(-1)(E-BCA)(E+BA)=E-BCA+BA-BCABA==E+B[-C+E-CAB]A=E+B[E-C(E+AB)]A=E==>E+BA可逆,且(E+BA)^(-1)=E-

矩阵AB=E,可以证明BA=E吗? 求证明..

因为AB=E所以|AB|=|A||B|=|E|=1≠0那么|A|≠0所以A可逆在AB=E两边分别左乘A^(-1),右乘AA^(-1)ABA=A^(-1)EA即BA=E再问:其实这是在定义AB=BA=E

逆矩阵中AB=BA=E,其中E具体是什么含义

一条对角线(左上到右下)是全是1,其他都为零,

已知A,B均为N阶矩阵,且A2-AB=E,证明R(AB-BA-A)=N

∵A(A-B)=A²-AB=E.∴A可逆,且A^(-1)=A-B,即有B=A-A^(-1).∴BA=A²-E=AB,则AB-BA+A=A.又∵A为N阶可逆矩阵,∴r(AB-BA+A

证明:不存在任何n阶矩阵A,B,使得AB-BA=E

直接计算Trace(AB-BA)=Trace(AB)-Trace(BA)=0,但Trace(E)=n.所以不存在这样的矩阵.至于杀鸡用牛刀的问题,我觉得,需要注意下面的一个事情.假设V是一个线性空间,

一道矩阵运算设二阶矩阵A,B满足BA-B=2E,E是单位矩阵 已知B的伴随矩阵B* 求矩阵AB的伴随矩阵B*是 { 0

(B*)·B=|B|E.取行列式.|B*||B|=|B|².|B|=|B*|=1BA-B=2E,左乘B*:A-E=2B*.A=2B*+E=(12)-23

线性代数证明可逆已知E+AB可逆(其中E为单位矩阵),试证E+BA也可逆,且有[(E+BA)-1]=E-B*[(E+AB

只要验证(E+BA)*{E-B*[(E+AB)-1]*A}与{E-B*[(E+AB)-1]*A}*(E+BA)都是单位阵E就行了.(E+BA)*{E-B*[(E+AB)-1]*A}=(E+BA)-(E

A,B为n阶矩阵且A+B=E,证明AB=BA

A(A+B)=AA+AB(A+B)A=AA+BAAA+AB=A=AA+BA所以AB=BA

矩阵运算设二阶矩阵A,B满足BA-B=2E,E是单位矩阵 已知B的伴随矩阵B* 求矩阵AB的伴随矩阵B*是 { 0 1

BA-B=2E两端同时乘上B的伴随阵,B*B*BA-B*B=2B*由B*B=|B|E|B|A-|B|E=2B*对B*B=|B|E两端同取行列式得到|B|=|B*|所以|B*|A|-|B*|E=2B*从

设矩阵B=(E+A)^(-1)(E-A),怎么推出(A+E)(B+E)=2E呢?

(A+E)[(E+A)^(-1)(E-A)+E]=(E-A)+(A+E)E=E-A+A+E=2E再问:太谢谢你了!

已知A*,且ABA∧-1=BA^-1+3E,E为四阶单位矩阵,求矩阵B.(原本告诉了A*我没打出,只是问下B怎么推出.

ABA∧-1=BA^-1+3E,右乘A:AB=B+3A(A-E)B=3A,B=3[(A-E)^-1]AA*→|A*|=|A|³,A*=|A|[A^-1]→[A^-1]→A→B

设A,B是n阶矩阵,E是n阶单位矩阵,且AB=A-B证明A+E可逆,证明AB=BA

AB+B=A(A+E)B=A+E-E(A+E)-(A+E)B=E(A+E)(E-B)=E所以A+E是可逆矩阵(A+E)(E-B)=(E-B)(A+E)=EA-AB+E-B=A+E-BA-BAB=BA

证明可逆矩阵 AB=E或BA=E都要证明?

证明其中一个就可以了若AB=E则|A||B|=E所以|A|≠0,|B|≠0故A,B可逆且由AB=E,两边左端A^-1得B=A^-1两边右乘B^-1得A=B^-1

设A ,B为n阶矩阵,AB=A+B,怎么推出(A-E)(B-E)=E?

AB=A+BAB-A=BA(B-E)=B1AB=A+BAB-B=A(A-E)B=A22式左乘1式得(A-E)BA(B-E)=AB当且仅当A与B可交换时,即AB=BA时得(A-E)AB(B-E)=AB(

试证不存在n阶方阵A、B满足AB-BA=E(E为单位矩阵)

由矩阵迹的性质知tr(AB-BA)=tr(AB)-tr(BA)=0,而tr(E)=n,两者不可能相等

一个矩阵的算式,最后一道题了,设四阶矩阵B满足[(0.5A)*]^(-1)BA^(-1)=2AB+6E,其中E是四阶单位

左乘(0.5A)*右乘A得到B=(0.5A)*(2AB+6E)A也就是B=2(0.5A)*ABA+6(0.5A)*A(0.5A)*A好像是0.5^4*|A|^4E记得不太清楚了反正结果是个数乘上单位矩

A是m*n矩阵,B是n*m矩阵,证明:R(E-AB)+n=R(E-BA)+m.急救中

考察方程(E-AB)x=0,x是m维向量,设这方程的解空间V的维数是k,则k=m-R(E-AB).设x是这方程的解,则ABx=Ex=x.这时BA(Bx)=B(ABx)=B(x)=(Bx),记y=Bx,