等边三角形,内部一点P到三点的距离分别是3,4,5
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 05:41:22
∠ADE=75°∵△ABE为等边三角形∴∠EAB=60°又∵DAB=90°∴∠DAE=∠DAB-∠EAB=90°-60°=30°又∵三角形EAB是以正方形的一边画出的等边三角形∴此三角形的三边长与正方
因为PA〈AB即PA〈BC又PB+PC〉BC(三角形两边之和大于第三边)所以PA〈BC〈PB+PC即PA〈PB+PC
假设等边三角形的边长为a,则高为√3/2×aS等边三角形=1/2×a×√3/2×a=√3/4×a^2另外S等边三角形=1/2×(3+4+5)×a=6a6a=√3/4×a^2a=8√3
假设等边三角形的边长为a,则高为√3/2×aS等边三角形=1/2×a×√3/2×a=√3/4×a^2另外S等边三角形=1/2×(3+4+5)×a=6a6a=√3/4×a^2a=8√3
如图将三角形APC绕点A顺时针旋转至三角形AP'B位置则三角形APC全等于三角形AP'B角P'BP=角P'BA+角ABP=角ACP+角ABP=60-角PCB+60-角P
如图,把△ABP绕点A逆时针旋转60°得到△ACD,则AD=PA=3,CD=PB=4,∴△APD是等边三角形,∴PD=PA=3,∵PD2+CD2=32+42=25,PC2=52=25,∴PD2+CD2
证明:过P向BC方向作BP垂线PD,且使PD=PC,连接BD、CD.∠BPC=150°故DPC=150°-90°=60°PD=PC故△CPD为等边三角形∠PCA=∠DCB故△PCA≌△DCBAP=BD
/>∠ABP=∠ABC-∠PBC=90-60=30度∵AB=BP=BP∴△ABP为等腰△∠BAP=(180-∠ABP)/2=75度∴∠PAD=∠DAP-∠BAP=90-75=15度
∵△ABP绕点A逆时针旋转后,能与△ACP'重合∴∠PAP'=∠BAC=60°,AP=AP'∴△APP'是正三角形,∴PP'=AP=3
设等边三角形ABC,内部一点P,PA=3,PB=5,PC=4,将△APC顺时针旋转60°,得到一个新三角形ADB,则△ADB≌△APC,AD=AP,〈DAP=60°,△ADP是正△,〈ADP=60°,
∵△ABC是等边三角形,∴∠BAC=60°∵△ABP绕A点逆时针旋转后与△ACP′重合,∴AP=AP′,∠BAP=∠CAP′,∴∠BAC=∠BAP+∠CAP=∠CAP+∠CAP′=∠PAP′=60°,
因三角形PBC等边所以角BPC=60度=角PBC所以角PBA=30度因PB=AB所以角PAB=角APB=(180-30)/2=75度所以角PAD=90-75=15度
因为三角形ABP绕点A逆时针旋转后,能与三角形ACQ重合,所以三角形ABP与三角形ACQ全等所以AP=AQ=3因为三角形ABC是等边三角形所以∠BAC=∠ABC=60`又因为∠PAC+∠BAP=∠AB
这个不是很显然吗点P和图形的各点相连得到n个三角形总面积等于所有三角形面积和S=1/2*a*(d1+d2+d3+…可以得到答案了
设PB=3,PA=4,PC=5,将△PBC绕B点逆时针旋转60°至△BDA(如图),∴DB=PB=3,AD=CP=5,△DBP是等边三角形,∴∠DPB=60°,在△ADP中,AP2+DP2=42+32
相等 ∵AP=CP,PD=PB,∠APD=∠CPB ∴△APD和△CPB全等 &nbs
用面积法来证明证:记三角形ABC是等边三角形,记其内部一点为O,连接OA,OC,OB,三角形ABC面积=三角形ABC的一边*高/2三角形ABC面积=三角形ABC的一边*(O到AB的距离+O到BC的距离
类似题目,仅供参考:已知P为正△ABC内一点,∠APB=110°,∠APC=125°求证:以AP,BP,CP为边可以构成一个三角形,并确定所构成的三角形的各内角的度数证明要点:将△APB绕点A旋转60
等边三角形周长为a,则边长为a3,设P到等边三角形的三边分别为x、y、z,则等边三角形的面积为b=12×a3×(x+y+z)解得x+y+z=6ba,故选C.