lim √x lnsinx =0 收敛
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 06:37:40
(1)lim(x1+x2+...+xn)/n=limxn没什么好办法,只有用极限的定义了.limxn=a设Sn=∑(1->n)xi(x1+x2+x3+...+xn)/n=Sn/n==(Sm+Sn-Sm
|xn|≤M-Myn≤xn.yn≤Myn-Mlim(n->∞)yn≤lim(n->∞)xn.yn≤Mlim(n->∞)yn0≤lim(n->∞)xn.yn≤0=>lim(n->∞)xn.yn=0
其实只需试着写两项就能发现关键了.那个级数写出来是-(U[1]+U[2])+(U[2]+U[3])-(U[3]+U[4])+...除了U[1]以外的项都两两消掉了.形式化的写出来是这样.考虑级数∑{1
An=(2n)!/a^(n!)A1=2/a易知An>0又A(n+1)/An=(2n+2)(2n+1)/a^(n+1)存在N使得当n>N(足够大时)A(n+1)/An=(2n+2)(2n+1)/a^(n
an=n!/n^n则lim(n→∞)a(n+1)/an=lim(n→∞){(n+1)!/[(n+1)^(n+1)]}/[n!/(n^n)]=lim(n→∞)(n^n)/[(n+1)^n]=lim(n→
证明的思路很明显与比较法是一样的,但题目有错误啊.级数收敛时,Un的极限是0,lnUn/lnn的极限存在的话,应该是一个负数啊再问:不好意思哦.把InUn/Inn改成ln(1/Un)/lnn再答:1、
sinx在x→+∞时是有界函数,因此lim(x→+∞)(sinx)/(√x)=0
limn->无限n^n/(n!)^2=limn->无限Π(i=1→n)[n/(i²)]=limn->无限e^ln[Π(i=1→n)n/(i²)]=limn->无限e^Σ(i=1→n
Xn和Yn都收敛a.证明:lim(n→∞)|Xn-a|
a(2n)=1/2^na(2n+1)=1/n这样级数的正部收敛,而负部发散,所以级数发散.(用这种方法可以构造出很多例子)说明交错级数的判别条件还是很重要的.
若∑(n=1)∞Un收敛,那么lim(n→∞)Sn存在,设为S那么lim(n→∞)S(n-1)=Slim(n→∞)un=lim(n→∞)[Sn-S(n-1)]=lim(n→∞)Sn-lim(n→∞)S
考虑级数n^n/(n!)^2后项比前项=[(n+1)^(n+1)/(n+1)!^2]/[n^n/(n!)^2]=[(1+1/n)^n]/(1+n)趋于0
马上写来再答:设级数∑An收敛于bn(An-A(n+1))=nAn-(n+1)A(n+1)-A(n+1)Sn=∑(k=1,n)[kAk-(k+1)A(k+1)-A(k+1)]=A1-(n+1)A(n+
下面所有lim均指n趋于正无穷大时由limUn=a,则任取ε>0,存在N,使得任意n>N有|Un-a|N有||Un|-|a||
B比如an=1/n,liman=0,但级数发散,故充分性不满足必要性证明:级数收敛,则limSn=S,所以liman=lim(Sn-Sn-1)=S-S=0
用后项比前项:因{2^(n+1)(n+1)!/(n+1)^(n+1)}/{2^n(n)!/(n)^n=2/(1+1/n)^n趋于2/e
首先,收敛是肯定的.那就不是条件就是绝对了,如果是绝对收敛,那么绝对1+条件1=绝对2条件1=绝对2-绝对1事实上绝对收敛的无论是级数,积分还是什么相加减的话结果都是依旧绝对收敛的,所以矛盾了.只能是
这个确实错的.如Un=1/(n*lnn),虽然满足条件,但级数发散于ln(lnn).
Sn是级数的部分和,则S(2n)有极限,记为limS(2n)=s.于是limS(2n+1)=limS(2n)+a(2n+1)=limS(2n)+lima(2n+1)=s.故级数收敛.
-1/2,用收敛的必要条件.经济数学团队帮你解答.请及时评价.再问:谢谢还有道题目概念都不理解--再答:请先采纳,再追问。再问:少了阶乘符号了吧?再答:是抄漏了,不好意思。