系数矩阵的行列式不等于零,说明方程只有零解
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:37:38
|A|,|B|是两个数,两个数的积不为0,这两个数当然都不为0所以|A|,|B|都不为0
等于.因为AB=BA=E(单位阵),B是A的逆矩阵.所以|AB|=|BA|=1.当A是方阵时,|AB|=|A||B|,|BA|=|B||A|,有|B|=1/|A|.
可以的只要系数组成的矩阵是一个方阵,那么系数行列式的值不为0
这两种说法并不矛盾.“如果齐次线性方程组的系数行列式不等于零,则它没有非零解”,就是说,它的解也是唯一的,这个“唯一的解”是零解.比如Ax=b,若b≠0,则为“非齐次线性方程组”,当│A│≠0时,有唯
如果一个线性方程组无解或者存在不唯一的解,则这个线性方程组的线性行列式等于零._____A∩B=A∪B既后一个的否命题原型.
证明:因为|A|=0所以AA*=|A|E=0所以A*的列向量都是AX=0的解.又因为|A|=0所以r(A)=1,所以r(A)>=n-1所以r(A)=n-1.所以AX=0的基础解系含n-r(A)=1个解
对的.先看矩阵秩的定义:矩阵A中如果存在一个r阶子式不等于0,而所有的r+1阶子式(如果存在的话)全等于0,则规定A的秩R(A)=r.那么,如果n阶方阵A满秩,就是A的秩为n,则A有一个n阶子式不等于
经济数学团队帮你解答,有不清楚请追问.请及时评价.
无解或无穷多解又补充了,用追问的方式比较好,否则很难再来看这个题目的.原因:非齐次线性方程组Ax=b有解的充分必要条件是r(A)=r(A,b)非齐次线性方程组Ax=b有唯一解的充分必要条件是r(A)=
这里的Q是有理数域的意思第二题的解答也有问题,合理的做法是|A|=a^2-2b^2≠0(因为2^{1/2}不是有理数)总体来讲就是你看的材料质量太差,所以你没能看明白
非零矩阵是有元素不为零的矩阵
你仔细去看一下,矩阵的秩是怎样定义的就明白了.矩阵A中如果存在一个r阶子式不等于0,而所有的r+1阶子式(如果存在的话)全等于0,则规定A的秩R(A)=r.n阶方阵A满秩,就是A的秩为n,则A有一个n
分析:由于第2问,直接对增广矩阵初等行变换,可同时得系数行列式|A|增广矩阵(A,b)=1111101-12123m+24n+3351m+85r3-2r1,r4-3r11111101-12101m2n
两个都是充要条件如果矩阵A可逆,|A|不等于零如果矩阵A不可逆,|A|=0这个是线性代数的一个定理,证明我忘了
这样,自由变量任取一组数,可由Crammer法则唯一确定剩下变量(称为约束变量)的值结合在一起就构成方程组的一个解向量.之所以称为自由变量,是因为它是"自由"的,它可任取一组数而构成一个解向量.再问:
若A为可逆阵,那么有A*A-1=E两边取行列式有|A*A-1|=|E|=1而左边有|A*A-1|=|A|*|A-1|=1≠0,所以|A|≠0证毕.
求逆公式是什么?1/{A}*{A}的伴随矩阵,你觉得什么东西分母可以等于0的呢?
证:因为|A|=0,所以r(A)=n-1.故r(A)=n-1.所以齐次线性方程组AX=0的基础解系含n-r(A)=1个解向量.所以AX=0的任一个非零解都是它的基础解系.因为AA*=|A|E=0.所以
协方差矩阵为零说明两个矩阵中的一个是有问题的,所以你要检查一下数据是不是正确,程序是不是出现意外错误了.协方差矩阵为零一般不会发生.
一个矩阵值行列式值为为0,它必然是方阵,由克莱姆法则知方程Ax=0若|A|=0,则该方程有非0解,则存在不全为0的k1,k2,k3...kn使得a1*k1加a2*k2加.an*kn=0,(其中a1,a