系数矩阵的行列式不等于零,说明方程只有零解

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 09:37:38
如果矩阵A的行列式乘以矩阵B的行列式不等于0,能不能说明A和B的行列式都不等于零?

|A|,|B|是两个数,两个数的积不为0,这两个数当然都不为0所以|A|,|B|都不为0

逆矩阵的行列式等不等于行列式的倒数?为什么?

等于.因为AB=BA=E(单位阵),B是A的逆矩阵.所以|AB|=|BA|=1.当A是方阵时,|AB|=|A||B|,|BA|=|B||A|,有|B|=1/|A|.

齐次线性方程组只有零解,能说明该系数行列式D不等于0吗?

可以的只要系数组成的矩阵是一个方阵,那么系数行列式的值不为0

克拉默法则说:"若线性方程组的系数行列式不等于零,那么方程组有唯一解."还有一个定理说:"如果齐次线性方程组的系数行列式

这两种说法并不矛盾.“如果齐次线性方程组的系数行列式不等于零,则它没有非零解”,就是说,它的解也是唯一的,这个“唯一的解”是零解.比如Ax=b,若b≠0,则为“非齐次线性方程组”,当│A│≠0时,有唯

如果线性方程组的系数行列式不等于零,则这个线性方程组一定有解,且解唯一.

如果一个线性方程组无解或者存在不唯一的解,则这个线性方程组的线性行列式等于零._____A∩B=A∪B既后一个的否命题原型.

线性方程组的通解 齐次线性方程组的系数矩阵A(n阶方阵)的行列式值为0,Aij不等于零,证明:

证明:因为|A|=0所以AA*=|A|E=0所以A*的列向量都是AX=0的解.又因为|A|=0所以r(A)=1,所以r(A)>=n-1所以r(A)=n-1.所以AX=0的基础解系含n-r(A)=1个解

满秩矩阵的行列式值不为零

对的.先看矩阵秩的定义:矩阵A中如果存在一个r阶子式不等于0,而所有的r+1阶子式(如果存在的话)全等于0,则规定A的秩R(A)=r.那么,如果n阶方阵A满秩,就是A的秩为n,则A有一个n阶子式不等于

已知A的行列式为零,证明A的伴随矩阵的行列式为零.

经济数学团队帮你解答,有不清楚请追问.请及时评价.

非齐次线性方程组系数行列式为零 解的个数是多少?

无解或无穷多解又补充了,用追问的方式比较好,否则很难再来看这个题目的.原因:非齐次线性方程组Ax=b有解的充分必要条件是r(A)=r(A,b)非齐次线性方程组Ax=b有唯一解的充分必要条件是r(A)=

矩阵A为任意非零矩阵,矩阵A属于交换环G,如何推出A的行列式不等于零?

这里的Q是有理数域的意思第二题的解答也有问题,合理的做法是|A|=a^2-2b^2≠0(因为2^{1/2}不是有理数)总体来讲就是你看的材料质量太差,所以你没能看明白

矩阵满秩满秩矩阵的行列式一定不等于零吗?

你仔细去看一下,矩阵的秩是怎样定义的就明白了.矩阵A中如果存在一个r阶子式不等于0,而所有的r+1阶子式(如果存在的话)全等于0,则规定A的秩R(A)=r.n阶方阵A满秩,就是A的秩为n,则A有一个n

已知非齐次线性方程组,求系数矩阵A 的行列式

分析:由于第2问,直接对增广矩阵初等行变换,可同时得系数行列式|A|增广矩阵(A,b)=1111101-12123m+24n+3351m+85r3-2r1,r4-3r11111101-12101m2n

如果矩阵A可逆,那么行列式A的值是不是一定不等于零?如果矩阵A不可逆,那么行列式A的值是不是一定等于零

两个都是充要条件如果矩阵A可逆,|A|不等于零如果矩阵A不可逆,|A|=0这个是线性代数的一个定理,证明我忘了

只要去除自由变量后,剩下的变量组成的矩阵行列式不为零即可,也就是剩下变量的秩与系数矩阵的秩相等

这样,自由变量任取一组数,可由Crammer法则唯一确定剩下变量(称为约束变量)的值结合在一起就构成方程组的一个解向量.之所以称为自由变量,是因为它是"自由"的,它可任取一组数而构成一个解向量.再问:

有关可逆矩阵的行列式请如果矩阵A为nxn可逆矩阵,那么是否一定有A的行列式不等于零?

若A为可逆阵,那么有A*A-1=E两边取行列式有|A*A-1|=|E|=1而左边有|A*A-1|=|A|*|A-1|=1≠0,所以|A|≠0证毕.

为什么行列式不等于零 矩阵可逆?

求逆公式是什么?1/{A}*{A}的伴随矩阵,你觉得什么东西分母可以等于0的呢?

齐次线性方程组的系数行列式|A|=0,A为n*n的矩阵,而A中某元素代数余子式不等于0.写不开了.见补充

证:因为|A|=0,所以r(A)=n-1.故r(A)=n-1.所以齐次线性方程组AX=0的基础解系含n-r(A)=1个解向量.所以AX=0的任一个非零解都是它的基础解系.因为AA*=|A|E=0.所以

协方差矩阵为零的含义如题;协方差矩阵为零说明什么不好意思,我的问题是:协方差矩阵的行列式为0

协方差矩阵为零说明两个矩阵中的一个是有问题的,所以你要检查一下数据是不是正确,程序是不是出现意外错误了.协方差矩阵为零一般不会发生.

线性代数行列式问题一个矩阵的行列式为零,为什么说明这个矩阵的行向量或者列向量就线性相关?

一个矩阵值行列式值为为0,它必然是方阵,由克莱姆法则知方程Ax=0若|A|=0,则该方程有非0解,则存在不全为0的k1,k2,k3...kn使得a1*k1加a2*k2加.an*kn=0,(其中a1,a