若n阶方阵a满足a3 a2-a-E=0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 03:49:51
线性代数:已知n阶方阵A满足A^2=E,证明A-E可逆;

因为A^2=E所以(A-E)(A+E)=0题目是不是有问题

设n阶方阵A满足A²=2A.证明A的特征值只能是0或2

证明:设a是A的特征值则a^2-2a是A^2-2A的特征值因为A^2-2A=0所以a^2-2a=0所以a(a-2)=0所以a=0或a=2.即A的特征值只能是0或2.

设n阶方阵A满足A*A-A-2E=0,证明A和E-A可逆

证明:因为A*A-A-2E=0,所以A(A-E)=2E或A(E-A)=-2E..所以A和E-A可逆,且A^-1=(1/2)(A-E),(E-A)^-1=(-1/2)A.满意请采纳^_^

线代证明题求解设A是n阶方阵,且满足R(E+A)+R(E-A)=n,试证:A满足A^2=E.

Only_唯漪的证法我好像没有看懂的样子……果然代数都忘光了,这里给出一种Jordan标准型的证法参考一下:——————————————————————————————————————————∵R(E

线性代数 设n阶方阵A满足A^2=E,|A+E |≠0,证明A=E

A^2=E==>A^2-E=0==>(A+E)(A-E)=O|A+E|≠0所以A+E可逆那么方程(A+E)x=0只有0解也就是说A-E的每一列都是0,所以A-E=O

设n阶方阵A满足A*A-A+E=0,证明A喂可逆矩阵

汗啊,是平方啊…………我以为是伴随呢…………A²-A+E=0E=A-A²=A(E-A)(E-A)A=A-A²=E所以A可逆,逆矩阵是E-A

设n阶方阵A满足(A+E)3=0,证明矩阵A可逆,并写出A逆矩

(A+E)^3=A^3+3A^2+3A+E=0A(A^2+3A+3E)=-E所以A可逆,A^-1=-(A^2+3A+3E)

A是n阶方阵,满足A^2-2A-2E=0,则(A+E)^-1=

3E+2A-A^2=E(3E-A)(E+A)=E所以(A+E)^-1=3E-A

若n阶方阵A满足A^2-3A-2E=O,那么A^-1=_,

A^2-3A-2E=OA^2-3A=2EA(A-3E)=2EA*[(A-3E)/2]=E自然A^-1=(A-3E)/2祝学习愉快请别忘记采纳

已知N阶方阵A满足A^2=4A,证明A-5E可逆?

A^2=4AA(A-4I)=0A=0orA-4I=0ifA=0A-4I=-4I(A-4I)^(-1)=(-1/4)IifA-4I=0A-5I=-Ithen(A-5I)^(-1)=-IieA-5I可逆

设A,B是n阶方阵,满足AB=A-B,证明AB=BA

AB=A-BAB-A+B-I=-I(A-I)(B+I)=-I(B+I)(A-I)=-IBA-A+B-I=-IBA=A-B所以AB=BA

设A是n阶方阵,满足A乘以A一撇等于E,|A|

[A+E]=[A+A*A']=[A][E+A']=[A][(A+E)']=[A]*[A+E]得到(1-[A])[A+E]=0因为|A|

设n阶方阵A满足A^2=E,证明r(A-E)=n-r(A+E)

证:由已知,A^2=E,(A+E)(A-E)=0所以r(A+E)+r(A-E)

若n阶方阵A满足A²-2A-4I=0,则A的逆矩阵等于多少?急,在线等.

A²-2A-4I=0所以A(A-2I)=4I所以A[(1/4)(A-2I)]=I所以A^(-1)=(1/4)(A-2I)

4.若n 阶方阵 A满足,A^2=0 则下列命题哪一个成立 ( ).

要是取巧,你想A=0是可能的,但也不是唯一的解,所以四个答案只有D正确要是正常解题,因为r(A)+r(B)-n

n阶方阵A满足,A的平方=0,证A的秩大于等于n/2

(结论应该是r(A)=.不然取A=0直接得到矛盾)考虑两个线性空间:(1)A的列空间,即A的各列向量张成的线性空间.它的维数即是A的列秩,等于A的秩,即r(A).(2)Ax=0的解空间,即Ax=0的所

若n阶方阵A满足A^T=-A,则对任意n维向量a均有a^TAa=0 为什么

a^TAa是一个数,则a^TAa=[a^TAa]^T=a^tA^Ta=-a^TAa,2aTAa=0,得a^TAa=0.

若n阶方阵A满足,A^2=0,则以下命题哪一个成立?

选D利用Sylvester不等式rank(A)+rank(B)