讨论函数在x=0处的连续
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 10:11:55
sgnx在点x=0处的左极限是-1sgnx在点x=0处的右极限是1符号函数sgnx在点x=0处的左右极限不相等再问:详细过程有吗?再答:不好意思,这些符号我不知怎么表达
∵x>0时,f(x)={[1+x]^(1/x)/e}^(1/x)∴两边同时取自然对数时,有:㏑f(x)=㏑{[1+x]^(1/x)/e}^(1/x)即㏑f(x)=(1/x²)㏑[1+x]-(
显然此函数可用以下分段函数形式表示y=x²(x≥0)y=-x²(x<0)下面只需要求出分段点的左右导数并比较是否相等就可以得出x=0点是否可导的结论f'(x)(x→0+)=2x(x
limit(ln(1+x)/x,x=0,right)=1;limit(sinx/x,x=0,left)=1;但f(x)在x=0处没有函数值,即在该点处没有定义故在此处不连续,但极限存在是1
1、∵f(x)=xx≥0-xx<0易求的f(x)在x=0的左导数为-1,右导数为1左右导数不相等,故在X=0处不可导2、∵limx→0+f(x)=0+1=1≠f(0)=0limx→0-f(x)=0-1
这个函数在x=0处连续但不可导.再问:需要过程再答:连续就不说了再答:当x大于0时导数为1,当x小于0时导数为-1,左右导数不同,所以不可导。再问:说说连续嘛,急呀再答:函数左极限等于右极限等于函数在
limf(x)=lim1/[1+e^(1/x)]=1/1=1;//x→0-,则1/x→-∞;则e^(1/x)→0.limf(x)=lim1/[1+e^(1/x)]=1/(+∞)=0;//x→0+,则1
在X=0点连续不可导因为在X=0点,f(0+)=0=f(0-)左极限等于右极限且等于该点定义值所以连续f(0+)'=(x^2)'|x=0=0f(0-)'=(x)'=1左导数不等于右倒数所以不可导
再问:上下x约掉了吧再答:抱歉,重做了一下。
x≥0时,y=|x|=xx=0时,y=0x≤0时,y=|x|=-xx=0时,y=0函数在x=0处连续.x≥0时,y'=x'=1x≤0时,y'=(-x)'=-11≠-1函数在x=0处不可导.
∵右极限f(0+0)=lim(x->0+)(x²)=0左极限f(0-0)=lim(x->0-)(x-1)=-1∴f(0+0)≠f(0-0)故函数f(x)在点x=0处不连续,点x=0属于第一类
当然有关系.不连续必不可导,连续未必可导,可导必连续.该函数在x=0处可导,导数为 f'(0)=lim(x→0)[f(x)-f(0)]/x=lim(x→0)[x^(1/3)]sin(1/x)=0,
无穷小和有界函数相乘结果是无穷小sin(1/x)和cos(1/x)均为有界函数故lim(x→0)x^2*sin(1/x)=lim(x→0)x^2*cos(1/x)=lim(x→0)x*sin(1/x)
当x>0时,f(x)=x当x
y=x^(1/3)y'=1/3*x^(-2/3)在x=0时,y'无意义.因此在x=0处不可导.再问:谢谢你再答:不客气,记得采纳喔!
再问:看一个函数可不可导不是要看它的左右导数?再答:但是你这个左右一样啊
(1)左极限=0^2+1=1,右极限=0+1=1,但f(0)=0≠1,因此函数在x=0处不连续.(2)左极限=1+cos0=2,右极限=2+0=2,f(0)=1+cos0=2,它们三个存在且相等,因此