n阶矩阵a满足A平方等于A
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 09:54:42
n阶矩阵A满足A平方=A===>r(A)≤n当r(A)=n时,===>A=E===>r(A-E)=0===>r(A)+r(A-E)=n当r(A)A为至少有一行是全0的单位矩阵===>r(A)+r(A-
A^3=3A^2-3A-A^3+3A^2-3A=0-A^3+3A^2-3A+I=I(I-A)^3=I所以,(I-A)[(I-A)^2]=I,即(I-A)(A^2-2A+I)=I,所以I-A可逆,且逆矩
设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0设A=[aij],其中i,j=1,2,...,n令C=A^2=A×A,依据矩阵乘法法则,C中主对角线上元素cii就是A的第i行和A第i列元素对
正交矩阵定义:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”.)或A′A=E,则n阶实矩阵A称为正交矩阵对称矩阵A'=A所以A方=E,命题成立
Aa=ra,r为特征根.a=Ea=A^2a=A(Aa)=Ara=rAa=r(ra)=r^2a=>r^2=1,r=1or-1.
设AX=λX,则λ是A的特征值(A^2)X=A(AX)=A(λX)=λ(AX)=λ^2X而A^2=E所以EX=λ^2X即λ^2是单位矩阵E的特征值,而单位矩阵的特征值全为1所以λ^2=1所以λ=正负1
A=A^24A^2-4A+E=E(E-2A)(E-2A)=E所以E-2A可逆且(E-2A)的负一次方等于E-2A
移项:A^2=A+2E两边同乘以A^(-2)就得到:E=(A+2E)^A*(-2)
(E+3A)(E-3A)=E-9A^2=E
移项使等号右边等于0提取公因式会有AX(A-1)=0出现的当然先要两边加绝对值吧
A^2=A->A(A-E)=0所以r[A(A-E)]≥r(A)+r(A-E)-nr(A)+r(A-E)≥r(A-A+E)所以r(A)+r(A-E)=n也可以用分块矩阵做
设b是特征值,则A*X=bX,由A^2=A得A*X=A^2*X=bA*X=b^2X故bX=b^2Xb=b^2解得b=0,b=1.a的特征值0或1.
AA=A=>AA-AE=O=>A(A-E)=O=>|A|*|A-E|=0但A≠E,所以|A|=0
设λ是A的任意一个特征值,α是λ所对应的特征向量Aα=λαA²α=λAαEα=α=λ·λα=λ²αλ²=1λ=±1所以A的特征值只能是1或-1
设λ是A的任意一个特征值,α是λ所对应的特征向量Aα=λαA²α=λAαEα=α=λ·λα=λ²αλ²=1λ=±1所以A的特征值只能是±1
因为E的特征值是1,所以A^2的特征值也是1,设A有特征值k,取相应的特征向量为x,则有Ax=kx,两式左乘A,得A^2*x=k*Ax=k^2*x,故k^2=1,k=±1
设λ是A的任意一个特征值,α是λ所对应的特征向量Aα=λαA²α=λAαEα=α=λ·λα=λ²αλ²=1λ=±1所以A的特征值只能是±1
(A+B)^2=A^2+AB+BA+B^2利用已知条件得AB+BA=0,或者AB=-BA接下去0=A(AB+BA)=AAB+ABA=AB+(AB)A=AB-BAA=AB-BA=2AB再问:首先非常感谢
设λ是A的任意一个特征值,α是λ所对应的特征向量Aα=λαA²α=λAαEα=α=λ·λα=λ²αλ²=1λ=±1所以A的特征值只能是±1
证明假定A可逆,其逆阵为BE=AB两边同时乘以A得A=AAB=AB于是A=E故A或者不可逆,或者为单位阵E再问:这只证明了A为单位矩阵啊再答:假定A可逆,则必为单位阵;或者不可逆这不就是要证明的结论吗