设 是三阶实对称矩阵A的特征值,且R(A)=1,
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 00:47:54
解.因为:实对称矩阵A的特征值全大于a,所以:A-aE为正定阵;同理:A-bE为正定阵.从而:(A-aE)+(A-bE)为正定阵.假设λ为A+B的任一特征值,相应的特征向量为x,即 (A+B
前面两个问题是肯定的,后面题目问的是不是有问题,正定矩阵的特征向量?
特征向量是有时正交有时不正交的.再问:那么什么情况下正交,什么情况下不正交啊,有规律吗?再答:只要是两重以上的特征值,正交和不正交的特征向量都是存在的,任何时候都可以找到正交和不正交的特征向量
设A是一个n*n的实对称矩阵,那么AX=aX(这里a是一个复数)那么两边同取共轭,得到conj(AX)=conj(aX)=conj(a)conj(X)因为A是对称的所以conjA=A成立,那么Acon
说实称矩阵吧给比较初等办吧A称L特征值E应特征向量D表示共轭转置(数比L即共轭)AE=LE(1)则D(E)AE=LD(E)E=L|E|(2)(1)求共轭转置D(E)A=D(L)D(E)则D(E)AE=
n=1的时候最简单n=2的时候取两个对角元一样大的对角阵,用平均值不等式验证这时候达到最大值n>2的时候不存在最大值,因为可以让前三个对角元取成-t,-t,N+2t,余下的元素都是0,这样当t->+o
设矩阵A的特征值为λ那么|A-λE|=1-λ221-λ=(1-λ)²-4=λ²-2λ-3=0解得λ=3或-1当λ=3时,A-3E=-222-2第2行加上第1行,第1行除以-21-1
要用到两个性质:性质1:正交阵A的特征值λ的模|λ|是等于1的.性质2:如果λ是A特征值,则λ²是A²的特征值.还要用到Jordan标准型的相关知识.就可以证明了.详细见参考资料.
可任意排列,但必须与P的列对应
3.对于对称方阵A(不一定正定)来说,它一定能有n个非负特征值吗?显然不能.比如-E,没有听说过负定矩阵吗?
对的此时A可对角化,其秩等于由特征值构成的对角矩阵的秩
可能不可逆的,对称矩阵又很多的,比如就第一行第一列元素为1,其他元素都为0的三阶方阵,显然是不可逆的
利用对称性与秩计算.经济数学团队帮你解答.请及时评价.
实数定理:实对称矩阵的特征值都是实数.
A一定正交相似于对角阵,而讨论对角阵的正定性比较简单.经济数学团队帮你解答,请及时评价.谢谢!
利用这条性质:A的最小特征值等于min(x'Ax)/(x'x),其中x取遍非零向量再问:请问这条性质怎么证明的,还有最大特征值=max上述的?再答:转化到带约束x'x=1的最值minx'Ax,然后用谱
对于非对称矩阵A,其特征值可能出现虚数,但不论如何总有μ_min再问:也就是说此时对应的特征向量也有可能是复数域的了?另外,要是只在实数域内求特征值,会出现什么结果啊?再答:一般来讲特征值和特征向量当
因为矩阵A为实对称矩阵所以存在可逆矩阵P,使得P^TAP=Λ=diag(λ1,λ2,...λn)因为特征值λi>0所以矩阵Λ为正定矩阵所以矩阵Λ的正惯性指数=n又因为矩阵A合同于矩阵Λ所以矩阵A的正惯
参考http://zhidao.baidu.com/question/919393532214610219.html
因为对称矩阵的属于不同特征值的特征向量正交所以若设属于特征值-1的特征向量为(x1,x2,x3)^T则有x1+x2+x3=02x1+2x2+x3=0方程组的基础解系为ζ3=(1,-1,0)^T所以属于