设0≤Un

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 19:18:17
若存在常数M>0,对任意的n∈N',恒有|un+1-un|+|un-un-1|+…+|u2-u1|≤M,则称数列{un}

是递减数列咯,它们之间的距离越来越小才会存在M,越来越大就是发散数列了.这种数列也叫收敛数列,数学书上有的啊.

设lim un=a,则级数(u(n)-u(n-1))为多少啊

∵sn=(u(n)-u(n-1))+(u(n-1)-u(n-2))+.+(u(1)-u(0))=u(n)-u(0)∴s=limsn=a-u(0)再问:结果为u1-a再答:结果u1-a印错了

设全集U=R,M={x|x≥1},N={x|0≤x<5},则(∁UM)∪(∁UN)为(  )

根据题意,M={x|x≥1},则∁UM={x|x<1};N={x|0≤x<5},则∁UN={x|x<0或x≥5};则(∁UM)∪(∁UN)={x|x<1或x≥5};故选B.

请教题高数级数证明题设级数Eun和Evn均收敛,且un

正项级数:∑(an-Un):(an-Un)≤(Vn-Un)因为正项级数∑(Vn-Un)收敛(两个收敛级数的差)由比较判别法正项级数:∑(an-Un)收敛.∑an=∑[(an-Un)+Un])收敛:(两

设级数∑un收敛,证明∑(un+un+1)也收敛

这道题考察级数的两个性质:1.任意加上或去掉级数的有限想不改变它的收敛性.2.若级数∑an收敛,级数∑bn收敛,则级数∑(an+bn)也收敛.通项拆为两部分Un和U(n+1),已知∑Un收敛,而∑U(

巧设陷阱 MAIGRET TEND UN PIèGE怎么样

以前曾经看过让·迦班主演的,这是第二次看他主演的电影,一部警匪片,结构合理,剧情紧凑,最后巧妙设局,抓住罪犯,可以看看.

若lim Un=A>0,用数列定义证明lim Un+1 / Un =1

∵limUn=A>0∴存在常数A,对于任意给定的正数ε(不论它多么小),总存在正整数N,使得当n>N时,不等式|Un-A|<ε都成立,|U(n+1)-A|2,取ε<A-2,当n>N时,不等式|[U(n

设Un>=0,且{NUn}有界,证明:级数∑Un^2收敛(n从1到无穷)

设NUn再问:高手,下边也写出来呗,要步骤,这部分没看呢,要考试啦!再答:∑1/N^2就是收敛的啊

设U1=1,U2=1,Un+1=2Un+3Un-1(n=2,3,……) bn=Un/Un+1(n=2,3,……),证li

哈哈~我是路过了~既然你会了我就不回答了~见到就是猿粪啊!认识认识吧啊哈哈哈

设数列{Un}收敛,则n→∞时limUn=limUn+k是否成立

设数列收敛于t那么有lim[n->∞]U[n]=t且lim[n->∞]U[n+k]=lim[(n+k)->∞]U[n+k]=t所以n->∞时,limU[n]=limU[n+k]

设un=(−1)nln(1+1n),则级数(  )

因为vn=ln(1+1n)单调递减,且limn→∞vn=0由莱布尼茨判别法知级数∞n=1un=∞n=1(−1)nvn收敛,而un2=ln2(1+1n)≈1n,且∞n=11n发散,因此∞n=1un2也发

设数列{Un}收敛于a,则级数(Un-U(n-1))=?)

应该等于n乘n-1也就是等于(a-u)乘(n剪1)答案就是a乘u再问:可我这边答案写着是U1-a,就是没有步骤再答:把你的QQ号给我,我和你讲再问:1309288676

高数级数习题,1 级数un=ln n/n^2 他是发散的还是收敛点?2 选择:设0≤un≤1/n 则下列级数一定收敛的是

再问:这是分开的两题........第二题和第一题无关.............能麻烦给下第二题的解答吗谢谢!

设u1=2,u2=4/3,...,Un+1=(Un+2)/3,...,求极限值

中学的知识基本忘记完了,凭印象推断一下.设3(Un+1+x)=Un+x,对比原题可知,x=-1,即3(Un+1-1)=Un-1,则Un+1-1=(U1-1)/3^n=1/3^n显然,Un+1>1,即U

设级数∑(n=1)Un收敛,且∑Un=u,则级数∑(Un+U(n+1))=?

∑(Un+U(n+1))=∑Un+∑Uk=(∑Un+∑Uk)-U1=2∑Un-U1=2u-U1再问:答案是2u-U0,U0好奇怪。再答:这个答案不应该是2u-U0.是2u-U1

设0≤un≤n-2/3(n=0,1,2…),则下列级数中必定收敛的是()

题目没错?0≤un≤n-2/3,这儿有点问题再问:0≤Un≤n^(-2/3)再答:这样的话,答案选D,因为0≤Un≤n^(-2/3),n^(-2/3)是发散的,平方以后变为n^(-4/3)=(1/n)

设数列{un}收敛于a,则级数(un-u(n-1))=?)

∑(un-u(n-1))=(u1-u0)+(u2-u1)+(u3-u2)+(u4-u3)+...=un-u0=a-u0其中u0为数列的首项再问:�Ǹ�Ҫ�DZ�ɡ�Un-U(n��1)��再答:∑Un-

设∑Un绝对收敛 ∑Vn收敛 证明∑UnVn绝对收敛

要证∑unvn绝对收敛就是要证级数∑|unvn|=∑|un||vn|收敛,由于∑vn收敛,故数列{vn}有界(因为limvn=0),所以有|vn|≤M.根据级数的柯西收敛原理,由∑un绝对收敛可知,对

设级数Un-Un-1收敛,级数Vn收敛,证明UnVn绝对收敛

是否差条件?级数Vn绝对收敛?再问:不是,就只有收敛。请问下,能证明级数Un收敛吗?再答:Un=1,级数Un-Un-1收敛Vn=(-1)^n/n,级数Vn收敛UnVn条件收敛再问:不明白,不过能证明级

设数列un收敛于S,则级数un+1-un收敛于

lim(n->无穷)un=S=lim(n->无穷)u(n+1)lim(n->无穷)(u(n+1)-un)=0