设A,B是n阶矩阵,E-AB可逆,证明E-BA可逆.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/09 01:59:27
E-AB可逆,则设其逆为C有(E-AB)C=E->B(E-AB)CA=BA->BCA-BABCA-BA+E=E(两边多配了一个E)->(E-BA)BCA+(E-BA)=E->(E-BA)(BCA+E)
AB是对称矩阵(AB)'=ABB'A'=AB你的前提条件不足,A,B应该是对称矩阵,这样就有BA=AB
AB-B=A,(A-E)B-E=A-E,(A-E)(B-E)=E,所以A-E可逆逆矩阵为B-E由1知(A-E)和B-E互逆所以(B-E)(A-E)=E与(A-E)(B-E)=E,展开比较就可以得到AB
利用行列式的性质|ABBA|=|A+BBA+BA|=|A+BB0A-B|=|A+B||A-B|再根据矩阵可逆的充要条件是行列式不为0可知命题成立.
1.直接看A*A的对角元即可.2.B=(E-A)^{-1}即得.3.方法同上.4.A=(B+E)^{-1}-E,故特征值都非零.5.直接看分量.6.利用A*adj(A)=|A|*E即得.7.(E+BA
最有问题,能有反例,比如令A=B=0就满足AB=A-B=0但A+B=0,不可逆
如果A可逆的话是n*n的
还可能等于-1.再答:可以收藏我哦
证∵(A-E)(B-E)=E又:det(A-E)*det(B-E)=detE=1∴det(A-E)≠0∴A-E是可逆阵
AB=A(E-A)=A-AABA=(E-A)A=A-AA所以AB=BA
AB+B=A(A+E)B=A+E-E(A+E)-(A+E)B=E(A+E)(E-B)=E所以A+E是可逆矩阵(A+E)(E-B)=(E-B)(A+E)=EA-AB+E-B=A+E-BA-BAB=BA
证明:[(E+AB)^-1A]^T^T表示转置,楼主懂得,证明矩阵对称的思路:就是证明转置矩阵是否等于矩阵本身)另外,题中:A+B都是n阶对称矩阵.不对吧,应该是A和B都是n阶对称矩阵[(E+AB)^
ABA=B^(-1),所以ABAB=E,所以(E+AB)(E-AB)=E-ABAB=0,就这样.
证:因为(E-BA)[E+B(E-AB)^-1A]=E-BA+B(E-AB)^-1A-BAB(E-AB)^-1A=E-BA+B(E-AB)(E-AB)^-1A=E-BA+BA=E.所以E-BA可逆,且
这个(C)正确因为A,B正定所以|A|>0,|B|>0所以|AB|=|A||B|>0所以AB可逆.
因为(E+AB)A=A(E+BA)所以A=(E+AB)^-1A(E+BA)所以(E-B(E+AB)^-1A)(E+BA)=E所以E+BA可逆且(E+BA)^-1=E-B(E+AB)^-1A再问:能不能
只能选B小于m再问:����ϸ����һ����лл再答:û����ϸ���ͣ������Ŀ�Dz��걸�ģ�ֻ��ѡB������R(AB)n����Ϊ����m>nʱA�������صģ�B���
AB=A+BAB-A=BA(B-E)=B1AB=A+BAB-B=A(A-E)B=A22式左乘1式得(A-E)BA(B-E)=AB当且仅当A与B可交换时,即AB=BA时得(A-E)AB(B-E)=AB(
只要找出一个非零解满足(E-AB)Y=0,就可以说明与题设矛盾,假设E-BA不可逆,则(E-BA)X=0有非零解,则可得X=BAX.又(E-AB)AX=AX-ABAX=AX-AX=0,即AX为(E-A