设a为三维列向量,e为三阶单位矩阵,则矩阵e-aa装置的秩

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 19:42:06
设方阵 A=E-2aaT,其中 E 为 n 阶单位矩阵,a 为 n 维单位列向量,证明:A为对称的正交矩阵.

直接验证.a是单位列向量,所以aTa=1AT=ET-2(aaT)T=E-2aaT所以是对称阵.ATA=(E-2aaT)(E-2aaT)=E-2aaT-2aaT+4aaTaaT=E这说明A是正交阵.

线性代数 :A为三阶矩阵,X为三维列向量,P=(X,AX,A²X) AP能直接写成(AX,A²X,A

这是分块矩阵的乘法把A看作只有一块的矩阵,即1行1列P是1行3列乘积为1行3列实际上P是一个3行3列的方阵,按列分块,每列一块.根据分块矩阵的要求,左乘矩阵列的分法与右乘矩阵行的分法一致就可以A的列不

设E为n级单位矩阵,a,b为给定的n维列向量并有a’b>0,证明H=E-(bb')/(b'b)+(aa')/(a'b)是

设e1=b/|b|,可以有单位正交基:e1,e2,.,en.在这组基下,向量b的坐标为(b1,0,...,0)',向量a的坐标为(a1,.,an)',其中a1*b1=a‘b>0.H所对应的线性变换在基

A为三阶方阵a为三维列向量 a,Aa,A的平方a线性无关,A立方a=5Aa-3A平方a,求证矩阵【a,Aa,A四次方a】

A^4a=A(A^3a)=A(5Aa-3A^2a)=5A^2a-3A^3a=5A^2a-3(5Aa-3A^2a)=14A^2a-15Aa(a,Aa,A^4a)=(a,Aa,A^2a)KK=10001-

设A为三阶矩阵,三维列向量a1,a2,a3线性无关,且满足Aa1=2a1+a2+a3,Aa2=2a2,Aa3=-a2+a

由已知A(a1,a2,a3)=(Aa1,Aa2,Aa3)=(2a1+a2+a3,2a2,-a2+a1)=(a1,a2,a3)B其中B=20112-1100由于a1,a2,a3线性无关,所以(a1,a2

若α为三维列向量,E为三阶矩阵,求E-αα^T的秩

设A=E-αα^T,则Aα=(E-αα^T)*α=α-αα^T*α=α-α(α^T*α),设α=(a,b,c)^T,则α^T*α=a^2+b^2+c^2,Aα=(1-a^2-b^2-c^2)α,A-E

设A为三阶矩阵,三维列向量a1,a2,a3线性无关,

A(a1,a2,a3)=(a1,a2,a3)KK=10201222-1所以|A||a1,a2,a3|=|a1,a2,a3||K|.由a1,a2,a3线性无关,所以|a1,a2,a3|≠0.所以|A|=

a为n维单位列向量,A=E-aa^T 求A秩

由已知aa^T的特征值为1,0,0,...,0所以A=E-aa^T的特征值为0,1,1,...,1由于A是实对称矩阵,所以r(A)等于A的非零特征值的个数,即r(A)=n-1.

线性代数!设a为n维列向量,且a^Ta=1,令A=E-aa^T,其中E是n阶单位矩阵,

R(A)=n-1,首先可以确定,A的基础解系所含的解向量个数是n-(n-1)=1个那么就很简单了,找一个向量,代入AX=0可以使之成立就行了.利用题目的暗示,这个向量可能是a我们试一试代入AX=0(E

设A为3阶矩阵,α1,α2,α3为三维列向量组,秩(α1,α2,α3)

(Aα1,Aα2,Aα3)=A﹙(α1,α2,α3)秩(Aα1,Aα2,Aα3)=秩[A﹙(α1,α2,α3)]≤秩(α1,α2,α3)

设方阵 A=E-2aaT,其中 E 为 n 阶单位矩阵,a 为 n 维单位列向量,证明:任意n维向量B都有//AB//=

分三步:1.因为a为n维单位列向量,所以有a'a=1(记a'=aT)2.A'A=(E-2aa')(E-2aa')=E-4aa'+4aa'aa'=E-4aa'+4aa'=E3.||AB||=√(AB)'

设α为n维列向量,E为n阶单位矩阵,证明A=E-2αα^T/(α^Tα)是正交矩阵

证明:因为A=E-2αα^T/(α^Tα)所以A^T=E^T-2(αα^T)^T/(α^Tα)=E-2αα^T/(α^Tα)所以AA^T=[E-2αα^T/(α^Tα)][E-2αα^T/(α^Tα)

线性代数题,设A=E+αβ^T,其中α、β均为列向量.

需要明白秩为1的矩阵的特征值是啥!显然题目中的αβ^T是一个秩为1的矩阵所以其特征为3,0,.0(n-1个0)那么A的特征值为4,1,.1(n-1个1)那么A+2E的特征值为6,3,.3(n-1个3)

设A为三阶方阵,α1,α2,α3为三维线性无关列向量组,且有Aα1=α2+α3,Aα2=α1+α3,Aα3=α1+α2.

(I)由已知得:A(α1+α2+α3)=2(α1+α2+α3),A(α2-α1)=-(α2-α1),A(α3-α1)=-(α3-α1),又因为α1,α2,α3线性无关,所以α1+α2+α3≠0,α2-

若a为三维列向量,设aT为a的转置,为什么秩r(aaT)

aa^T的每一列都可以用a表示,秩当然不超过1

设A为三阶方阵,A1,A2,A3表示A三个列向量,则A的行列式等于?

设A1=[a11a21a31]T;A2=[a12a22a32]T;A3=[a13a23a33]T;则A的行列式为:-a13a22a31+a12a23a31+a13a21a32-a11a23a32-a1