设A为实对称矩阵,若A^2=O,则A=
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 18:33:00
正交矩阵定义:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”.)或A′A=E,则n阶实矩阵A称为正交矩阵对称矩阵A'=A所以A方=E,命题成立
终于看明白了,稍等啊再问:则B必为()然后四个选项ABCD选哪个?不好意思括号没打再答:矩阵A是正定矩阵,则它一定是可逆矩阵,与可逆矩阵相似的矩阵一定也是可逆矩阵。故选C.与实对称矩阵相似的矩阵未必是
【1】令P,Lambda分别为特征矩阵和特征值矩阵,则.【2】因为P是个正交矩阵,所以PP^-1是个常数,
(A^2)^T=(A^T)^2=(-A)^2=A^2故A^2是对称的.
实对称阵于是A=A‘(A的转置),那么A²=AA’=0设A=(aij),那么AA‘=(∑(aij)²),于是(∑(aij)²=0,aij=0,对1≤i,j≤n,这就证明了
设λ是A的特征值则λ^2-λ是A^2-A的特征值而A^-A=0,零矩阵的特征值只能是0所以λ^2-λ=0所以λ=0或1即A的特征值只能是0,1又由已知A是实对称矩阵,故A可对角化,对角线元素由0,1组
做特征值分解就好了.求A的特征值,即det(A-λI)=0,可得λ=5,2,-1所以,A-5I=-4-20-2-3-20-2-2所以,特征向量为c(1,-2,2),取长度为1的,得(1/3,-2/3,
由于A是对称矩阵,因此存在正交矩阵T使得T^(-1)AT为对角矩阵,其中对角线上的元素为A的所有特征值,因此只要证A的特征值只有0和1即可由于A^2=A,所以A的特征是0或1,证毕
因为|A|=|A^T|≠0所以A^T可逆A^-1=(A^T)^-1=(A^-1)^T所以A^-1为对称阵
A秩为3,则,x为A特征值对角矩阵diag(x1,x2,x3,0)A^2+A=0(A+E)A=0r(A+E)+R(A)《4r(A+E)《1即r(A+E)=1A化为对角矩阵diag(x1,x2,x3,0
因为A^2+5A=0所以A(A+5E)=0所以A的特征值只能是0或-5.而A是秩为2的3阶实对称矩阵所以A的特征值为0,-5,-5.再问:为啥A(A+5E)=0所以A的特征值只能是0或-5.再答:若a
证明:因为A是实对称矩阵所以A相似于对角矩阵diag(λ1,λ2,...,λn)其中λi是A的特征值.因为相似矩阵有相同的秩,故r(A)=λ1,λ2,...,λn中非零数的个数.由A是实对称矩阵知A^
设λ是A的特征值则λ^3-2λ^2+4λ-3是A^3-2A^2+4A-3E的特征值而A^3-2A^2+4A-3E=0,零矩阵的特征值只能是0所以λ^3-2λ^2+4λ-3=0.λ^3-2λ^2+4λ-
A^2=A,A的特征值是0和1.因为A是实对称矩阵,可对角化,所以A的秩就是对角化后非零主对角线元素的个数,所以A的特征值是r个1与n-r个0.所以2E-A的特征值是r个1与n-r个2,所以|2E-A
由A^2+2a=0知道,A的特征值都是方程x^2+2x=0的根,所以A的特征值是0与-2,那么kA+E的特征值是k*0+1与k*(-2)+1,即1与1-2k,要想kA+E正定,则1-2k>0,所以k<
1.直接用定义验证x非零时x^TBx>0,当然也可以看特征值2.A=C^TC,那么AB合同于CBC^{-1},然后看特征值
由已知,存在正交矩阵Q使得Q^TAQ=B因为A是对称矩阵所以A^T=A所以B^T=(Q^TAQ)^T=Q^TA^T(Q^T)^T=Q^TAQ=B所以B为对称矩阵.又因为A为实矩阵,则其特征值都是实数,
一楼是利用实对称矩阵是正规矩阵,所以可以对角化.不过这个是相似标准型的内容,开学到现在可能还没学到这部分内容吧.其实没那么麻烦.你看看A*A的对角线是什么.由于对称性,第一个对角线元素就是a11^2+
解:设a是A的特征值则a^3-3a^2+5a-3是A^3-3A^2+5A-3I=0的特征值所以a^3-3a^2+5a-3=0即(a-1)(a^2-2a+3)=0因为A是实对称矩阵,A的特征值都是实数所