设CA=IN(nxn单位矩阵)证明方程AX=0只有平凡解.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:39:26
设2阶矩阵A相似于矩阵B=(2,0 2,-3) E为2阶单位矩阵 则与矩阵E-A相似的矩阵是

因为A与B相似所以存在可逆矩阵P,满足P^-1AP=B所以与E-A相似的矩阵是:P^-1(E-A)P=P^-1EP-P^-1AP=E-B=-10-24

设A是n阶矩阵,满足AA^T=E(E是n阶单位矩阵),A^T是A的转置矩阵,且|A|

E+A^T=(E+A)^T两边取行列式|E+A^T|=|(E+A)^T|=|E+A|再问:甚妙甚妙!!!非常感谢!这个题我明白了。但是这个题里面A^T=A这个式子能不能成立呢?也就是说,已知AA^T=

设A,B,C均为n阶矩阵,AB=BC=CA=E,E为n阶单位阵,则A^2+B^2+C^2=?

AB=BC=CA=EB=A^(-1),B=C^(-1),A=C^(-1)A=B=C,A^2=B^2=C^2=EA^2+B^2+C^2=3E

设方阵 A=E-2aaT,其中 E 为 n 阶单位矩阵,a 为 n 维单位列向量,证明:A为对称的正交矩阵.

直接验证.a是单位列向量,所以aTa=1AT=ET-2(aaT)T=E-2aaT所以是对称阵.ATA=(E-2aaT)(E-2aaT)=E-2aaT-2aaT+4aaTaaT=E这说明A是正交阵.

刘老师,已知n阶矩阵A与上三角矩阵B=(bij)nxn相似,则A的特征值为?

相似矩阵有相同的特征值.所以A的特征值即B的特征值.又对角阵和上三角阵(或下三角阵)的特征值为对角元素.所以A的特征值为B的对角元素Bii

设A=(aij)nxn是正交矩阵,且A的行列式大于零,Aij是aij的代数余子式(i,j=1,2,.n),证明:Aij=

由A正交得AA'=E.即A^(-1)=A'.等式两边求行列式得|A|^2=1.由已知A的行列式大于零,所以|A|=1.所以有AA*=|A|E=E.所以A^(-1)=A*.所以A*=A'.即Aij=ai

设A是n阶不可逆矩阵 证明 存在n阶非零矩阵B C 使得AB=CA=0

(1)A不可逆,故其秩小于n,故可经过有限次行初等变换P1,P2,.Pk变为第一行元素全为0的矩阵DD=(Pk).(P2)(P1)A=QA,设:Q=(Pk).(P2)(P1)取F为这样的矩阵:其第一行

设A是一nxn矩阵,IAI=1,证明:A可以表成P(i,j(k))这一类初等矩阵的乘积

因为|A|=1≠0,所以矩阵A为可逆矩阵.又因为(定理)方阵A为可逆矩阵的充要条件是A可以写成初等矩阵的乘积所以A可以表示成P(i,j(k))这一类初等矩阵的乘积

求助啊~线代的题不会了.矩阵A平方等于A,其中A为nxn矩阵,则求证RANK(A)=a11+a22+a33+...+an

这个有点麻烦.先给你说思路,不明白再追问吧a11+a22+a33+...+ann是A的迹,它等于A的所有特征值之和.所以需证明A的秩等于A的所有特征值之和由A^2=A知A可对角化由A(A-E)=0知A

设矩阵A,B,C,满足AB=BA,AC=CA证明A(BC)=(BC)A

A(BC)=(AB)C=(BA)C=B(AC)=B(CA)=(BC)A

设A为n阶可逆矩阵,E为n阶单位矩阵,刚A-1[A,E]= _______

按分块矩阵的乘法A^-1[A,E]=[A^-1A,A^-1E]=[E,A^-1].(*)教材中有这样的结论:n阶方阵A可逆的充分必要条件是A可以表示成有限个初等矩阵的乘积.当A可逆时,其逆矩阵A^-1

设A、B、C、D、均为n 阶矩阵,切|A|不等于0,AC=CA求证:

|A|不等于0,故A是可逆矩阵[A^(-1)On]*[AB]=[InA^(-1)B][-CA^(-1)In][CD][0nD-CA^(-1)B]两边同取行列式左边=|A^(-1)|*|AB|=|D-C

设A=(aij)nxn是正定矩阵,证明:B=(bibjaij)nxn是正定矩阵,其中bi(i=1,2,...n)是非零实

B的k阶顺序主子式Bk=a11b1b1a12b1b2...a1kb1bka21b2b1a22b2b2...a2kb2bk.ak1bkb1ak2bkb2...akkbkbk第i行提出bi,第j列提出bj

高等代数矩阵证明题A为nxn矩阵,rankA=r,证:存在一个nxn可逆矩阵P使PAP∧(-1)的后n-r行全为0(只用

在这个问题里P^{-1}确实没什么用,你只要把PA化到后n-r行为0的形式就够了等你学到特征值和相似变换之后就会明白这里列变换的作用

设A,B是nxn实对称矩阵,A正定.请证明:若B也正定,则AB的特征值全是正的.

设PAP'=E,PABP逆=PAP'(P逆)'BP逆=(P逆)'BP逆,B正定,(P逆)'BP逆也正定,特征值均正,AB相似于(P逆)'BP逆,所以其特征值全正.

关于可逆矩阵的问题(1)A,B,C为n阶矩阵,且AB=BC=CA=E,则A^2+B^2+C^2=还有一题:设n阶矩阵A满

AB=AC=BC=E,可知BA=CA=CB=EA^2+B^2+C^2=(A^2+B^2+C^2)BC=A(AB)C+BB(BC)+C(CB)C=E+BB+CC=(E+BB+CC)AC=E+B(BA)C