设CA=IN(nxn单位矩阵)证明方程AX=0只有平凡解.
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 04:39:26
因为A与B相似所以存在可逆矩阵P,满足P^-1AP=B所以与E-A相似的矩阵是:P^-1(E-A)P=P^-1EP-P^-1AP=E-B=-10-24
E+A^T=(E+A)^T两边取行列式|E+A^T|=|(E+A)^T|=|E+A|再问:甚妙甚妙!!!非常感谢!这个题我明白了。但是这个题里面A^T=A这个式子能不能成立呢?也就是说,已知AA^T=
AB=BC=CA=EB=A^(-1),B=C^(-1),A=C^(-1)A=B=C,A^2=B^2=C^2=EA^2+B^2+C^2=3E
直接验证.a是单位列向量,所以aTa=1AT=ET-2(aaT)T=E-2aaT所以是对称阵.ATA=(E-2aaT)(E-2aaT)=E-2aaT-2aaT+4aaTaaT=E这说明A是正交阵.
相似矩阵有相同的特征值.所以A的特征值即B的特征值.又对角阵和上三角阵(或下三角阵)的特征值为对角元素.所以A的特征值为B的对角元素Bii
由A正交得AA'=E.即A^(-1)=A'.等式两边求行列式得|A|^2=1.由已知A的行列式大于零,所以|A|=1.所以有AA*=|A|E=E.所以A^(-1)=A*.所以A*=A'.即Aij=ai
(1)A不可逆,故其秩小于n,故可经过有限次行初等变换P1,P2,.Pk变为第一行元素全为0的矩阵DD=(Pk).(P2)(P1)A=QA,设:Q=(Pk).(P2)(P1)取F为这样的矩阵:其第一行
因为|A|=1≠0,所以矩阵A为可逆矩阵.又因为(定理)方阵A为可逆矩阵的充要条件是A可以写成初等矩阵的乘积所以A可以表示成P(i,j(k))这一类初等矩阵的乘积
这个有点麻烦.先给你说思路,不明白再追问吧a11+a22+a33+...+ann是A的迹,它等于A的所有特征值之和.所以需证明A的秩等于A的所有特征值之和由A^2=A知A可对角化由A(A-E)=0知A
如果A可逆的话是n*n的
证:如果r(A)
A(BC)=(AB)C=(BA)C=B(AC)=B(CA)=(BC)A
按分块矩阵的乘法A^-1[A,E]=[A^-1A,A^-1E]=[E,A^-1].(*)教材中有这样的结论:n阶方阵A可逆的充分必要条件是A可以表示成有限个初等矩阵的乘积.当A可逆时,其逆矩阵A^-1
|A|不等于0,故A是可逆矩阵[A^(-1)On]*[AB]=[InA^(-1)B][-CA^(-1)In][CD][0nD-CA^(-1)B]两边同取行列式左边=|A^(-1)|*|AB|=|D-C
设A为m*n阵n=r(CA)=n,而r(A)
B的k阶顺序主子式Bk=a11b1b1a12b1b2...a1kb1bka21b2b1a22b2b2...a2kb2bk.ak1bkb1ak2bkb2...akkbkbk第i行提出bi,第j列提出bj
在这个问题里P^{-1}确实没什么用,你只要把PA化到后n-r行为0的形式就够了等你学到特征值和相似变换之后就会明白这里列变换的作用
R(CA)=R(In)=n
设PAP'=E,PABP逆=PAP'(P逆)'BP逆=(P逆)'BP逆,B正定,(P逆)'BP逆也正定,特征值均正,AB相似于(P逆)'BP逆,所以其特征值全正.
AB=AC=BC=E,可知BA=CA=CB=EA^2+B^2+C^2=(A^2+B^2+C^2)BC=A(AB)C+BB(BC)+C(CB)C=E+BB+CC=(E+BB+CC)AC=E+B(BA)C