设limf(x) x趋于0,且..证

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:47:20
设f(x)为连续函数,g(x)=∫(0,1)f(xt)dt,且当x趋于0时,limf(x)/x=A,求g'(x)并讨论g

由题设,知f(0)=0,g(0)=0,令u=xt,得g(x)=∫(0,x)f(u)du/x,(x≠0),从而g'(x)=[xf(x)-∫(0,x)f(u)du]/x^2,(x≠0),由导数定义有,g'

设limf(x)-f(a)/(x-a)(x-a)=1(x趋于a),则f(x)在x=a处取得最小值,为什么

lim(x-a)=0,(x趋于a)limf(x)-f(a)/(x-a)(x-a)=1(x趋于a)lim[f(x)-f(a)]*(x-a)/(x-a)(x-a)=lim[f(x)-f(a)]/(x-a)

设fx在x=0处连续,且limf(x)/x存在,证明f(x)在x=0处可导

因为limf(x)/x存在,且x=0处连续,所以f(0)=0,所以limf(x)/x=lim[f(x)-f(0)]/x-0=f'(0),所以f(x)在x=0处可导

设函数f在任一有限区间上可积,且limf(x)=a (x趋于+∞)证明:lim1/x∫f(t)dt=a(积分是0到x)

用洛必达法则就行了上下求导,就能得到这个结论再问:这道题的条件是在任一有限区间上可积,不能满足在一定在变上限积分上可导,不能用洛必达啊。。。再答:对∫f(t)dt求导,是它自身这个没错吧,那就能用啊再

f(x)在(-∞,+∞)内有三阶导数,x→∞时,limf(x),limf'(x),limf"(x)存在,且,limf"'

假设limf'(x)=A≠0,不妨设A>0由保号性得,对于存在x0>0使得x>x0时f'(x)>A/2f(x)>f(x0)+(A/2)(x-x0)>M则x>|M-f(x0)|/(A/2)所以x>max

设x趋于无穷大时,limf'(x)=k,常数a>0,用拉格朗日中值定理求x趋于无穷大时,lim[f(x+a)-f(x)]

f(x+a)-f(x)=f'(ξ)aξ在x和x+a之间limf'(ξ)=k所以lim[f(x+a)-f(x)]=ak补充的回答ξ在x和x+a之间x趋向于无穷大了ξ当然也就无穷大了

设f(x)=1/(a+|a|e^bx)在R上连续且limf(x)=0(X趋于负无穷)确定a,b符号

(1)f(x)在R上连续可知,a+|a|e^bx≠0(x属于R)当x=0时,原式=a+|a|≠0,所以a>0;(2)limf(x)=0(X趋于负无穷)可知,当x趋于负无穷时,a+|a|e^bx趋于无穷

设f(0)=0且极限存在x→0,lim f(x)/x,则 x→0,limf(x)/x=

x→0,limf(x)/x=x→0,limf(x)-f(0)/x=f'(0)

设limf(x)=A,且A>0,证明lim根号f(x)=根号A

再问:再问:我这么写对么再答:可以。再问:嗯谢谢

两高数选择,(1)设函数f(x)在x=0的某邻域内三阶可导,limf'(x)/(1-cosx)=-1/2 (x趋于0),

第一个由一阶导数fx可知fx的导数趋近于零,对极限用洛比达,上下再求导,知fx的二阶导数也趋近于零,上下再求导数,知fx三阶导数趋近于-1/2,小于零,即二阶导数是单调减函数,所以小于零时,二阶导数大

若lim[f(x)+f'(x)]=0,x趋于正无穷且f'(x)在0到正无穷上连续,证明limf(x)=limf'(x)=

无穷/无穷型的洛必达法则limf(x)=lime^xf(x)/e^x洛必达法则得=lime^x(f(x)+f'(x)/e^x=limf(x)+f'(x)=0,于是limf'(x)=limf(x)+f'

当x趋于0时,limf(ax)/x=1/2,求当x趋于0时,limf(bx)/x=()

由题意知,f(0)=0,又不知f(x)是否可导,所以只能用导数定义做:lim(x→0)f(ax)/x=alim(x→0)[f(ax)-f(0)]/ax=af'(0)=1/2;所以f'(0)=1/2a;

limf''(x+a),x趋于0是不是等于求f''(a)?

不等于,应该是先求2导,在求极限

设函数在(-∝,∞)内可导,且f(x)=e^-2x+limf(x),x->0则f'(x)等于?

由于f(x)在(-∝,∞)内可导,所以f(x)在x=0连续因此limf(x),x->0等于常数f(0)所以f'(x)=[e^-2x]'=-2e^-2x

设limf(x)=0请证明limf(x)sinx=0 x→x0 x→x0

limf(x)sinx=limf(x)*limsinx=0*0=0再问:limsinx区域值不是(-1,1)再答:x->0时,sinx->0

高数 证明limf(x)=A【x趋于无穷大】与limf(x)=limf(x)=A【x分别趋于正无穷与负无穷】是充要条件

必要性:因为limf(x)=A【x趋于无穷大】,所以任给正数ε,存在正数M,当│x│>M时,有│f(x)-A│M时,有│f(x)-A│