设limf(x) x趋于0,且..证
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 14:47:20
由题设,知f(0)=0,g(0)=0,令u=xt,得g(x)=∫(0,x)f(u)du/x,(x≠0),从而g'(x)=[xf(x)-∫(0,x)f(u)du]/x^2,(x≠0),由导数定义有,g'
lim(x-a)=0,(x趋于a)limf(x)-f(a)/(x-a)(x-a)=1(x趋于a)lim[f(x)-f(a)]*(x-a)/(x-a)(x-a)=lim[f(x)-f(a)]/(x-a)
因为limf(x)/x存在,且x=0处连续,所以f(0)=0,所以limf(x)/x=lim[f(x)-f(0)]/x-0=f'(0),所以f(x)在x=0处可导
用洛必达法则就行了上下求导,就能得到这个结论再问:这道题的条件是在任一有限区间上可积,不能满足在一定在变上限积分上可导,不能用洛必达啊。。。再答:对∫f(t)dt求导,是它自身这个没错吧,那就能用啊再
假设limf'(x)=A≠0,不妨设A>0由保号性得,对于存在x0>0使得x>x0时f'(x)>A/2f(x)>f(x0)+(A/2)(x-x0)>M则x>|M-f(x0)|/(A/2)所以x>max
f(x+a)-f(x)=f'(ξ)aξ在x和x+a之间limf'(ξ)=k所以lim[f(x+a)-f(x)]=ak补充的回答ξ在x和x+a之间x趋向于无穷大了ξ当然也就无穷大了
(1)f(x)在R上连续可知,a+|a|e^bx≠0(x属于R)当x=0时,原式=a+|a|≠0,所以a>0;(2)limf(x)=0(X趋于负无穷)可知,当x趋于负无穷时,a+|a|e^bx趋于无穷
x→0,limf(x)/x=x→0,limf(x)-f(0)/x=f'(0)
再问:再问:我这么写对么再答:可以。再问:嗯谢谢
第一个由一阶导数fx可知fx的导数趋近于零,对极限用洛比达,上下再求导,知fx的二阶导数也趋近于零,上下再求导数,知fx三阶导数趋近于-1/2,小于零,即二阶导数是单调减函数,所以小于零时,二阶导数大
无穷/无穷型的洛必达法则limf(x)=lime^xf(x)/e^x洛必达法则得=lime^x(f(x)+f'(x)/e^x=limf(x)+f'(x)=0,于是limf'(x)=limf(x)+f'
由题意知,f(0)=0,又不知f(x)是否可导,所以只能用导数定义做:lim(x→0)f(ax)/x=alim(x→0)[f(ax)-f(0)]/ax=af'(0)=1/2;所以f'(0)=1/2a;
不等于,应该是先求2导,在求极限
由于f(x)在(-∝,∞)内可导,所以f(x)在x=0连续因此limf(x),x->0等于常数f(0)所以f'(x)=[e^-2x]'=-2e^-2x
limf(x)sinx=limf(x)*limsinx=0*0=0再问:limsinx区域值不是(-1,1)再答:x->0时,sinx->0
必要性:因为limf(x)=A【x趋于无穷大】,所以任给正数ε,存在正数M,当│x│>M时,有│f(x)-A│M时,有│f(x)-A│