设X1X2X3X4是来自均值为θ的指数分布总体的样本
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 03:48:15
令:Z=X-Y,则由于X,Y相互独立,且服从正态分布,因而Z也服从正态分布,且EZ=EX-EY=0-0=0,DZ=D(X-Y)=DX+DY=12+12=1,因此,Z=X-Y~N(0,1),∴E|X-Y
题目已经指出是简单随机样本,就说明X1...XN是独立的.
哎呀,这是考验真题,你没答案么?我记得是零几年的考研数一原题,你去找找答案吧?我这给你打也太麻烦点了再问:�ܸ��ҽ���˼·ô��ʲôһ��һ��再答:�Ҽǵ��кü��ַ��������õ����
这题就是把N从常量整数变成变量,如果是常量整数,Y服从正态分布,变成变量整数其实也服从正态分布,但此时E(Y)跟D(Y)就变了.但是也很好求,只是比较麻烦.E(X)=λ,D(X)=ε平方,E(N)=1
所求数学期望与X~N(0,1)的数学期望相同,为0.
X~B(n,p),本题n=2,p=0.3,所以E(样本均值)=np=2×0.3=0.6.
若X1,X2,X3,X4独立,(X1+X2)服从N(0,8),则(1/8)(X1+X2)^2服从卡方1;(X3-X4)服从N(0,8),则(1/8)(X3-X4)^2服从卡方1;当C=1/8时,CY服
o=根号4=2n=9P{|X拔-μ|/(o/根号n)再问:额,我们还没讲过置信区间,μ=1.3067,答案再答:我后头不是给你写了步骤了3o换成o/3除写成乘了。。。μ/(o/3)=1.961.96*
选B,因为他的期望不是是uE(A)=uE(X1+X2+X3)=E(X1)+E(X2)+E(X3)=3uE(0.2X1+0.3X2+0.5X3)=0.2E(X1)+0.3E(X2)+0.5E(X3)=u
样本均值?那不直接是(X1+.+Xn)/n不过应该不是问这个吧可以说详细点?再问:是等于N(μ,σ^2)吗再答:有完整的题目么?这个X~N(μ,σ^2)意思是总体X服从总体均值为μ,总体标准差为σ的正
首先有结论:当诸Xi相互独立时,Var(∑Xi)=∑Var(Xi),证明的话用协方差Var(∑Xi)=Cov(∑Xi,∑Xi)=∑Cov(Xi,Xj)=∑Var(Xi)然后可得到:Var(1/n·∑X
1.总体均值μ的点估计当然是1002.没有标准差怎么算第二小题?假设这个标准差是8,置信度0.95时,z=1.96,总体均值μ的置信区间=(100-1.96×8/100的平方根,100+1.96×8/
上面这个网址有关于这个结论的详细证明,如有不懂可追问.
X1,X2.Xn来自总体为N(0,σ^2)=>∑xi~N(0,nσ^2)=>∑xi/√(nσ^2)~N(0,1)=>[∑xi/√(nσ^2)]^2~x^2(1)=>C=nσ^2
4是方差?x1+..x16~N(12*16,4*16)均值-12=(x1+..x16-12*16)/16P(|均值-12|>1)=P(|x1+..x16-12*16|>16)即求16个样本和的分布同其
1.由伽方分布的性质有:\x0dY=X1+X2+...+Xn服从自由度为nm的伽方分布,记其密度为fY(t).\x0d2.样本均值Z=Y/n,Z的分布函数记为FZ(z)=P{Z<=z}=P{Y&
均值=(X1+X2+.+Xn)/n方差=[(X1-均值)^2+(X2-均值)^2+.+(Xn-均值)^2]/n
DX拔=DX/n=(b-a)^2/12n再问:为什么分母有一个n呢再答:DX拔=DX/n样本均值的期望=总体的期望样本均值的方差=n分之总体方差