设Xn的极限是A,证明X1 x2 xn n

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/07 21:51:24
证明数列收敛 求极限设X1>0 a>0 且 X(n+1)=1/2(Xn+a/Xn) 求数列{Xn}极限

记a的算术平方根为Q(抱歉我还只有一级不能插图片,连个公式也插不了)1.当X1>Q时,证有界:设Xn>Q,(显然N=1时成立),则X(n+1)=(Xn+a/Xn)/2>(Q+a/Q)/2=Q(y=x+

高等数学数列的极限limX=a,证明limX=a的绝对值设数列{Xn}有界,又limYn=0,证明limXnYn=0

limX=aa的绝对值数列{Xn}有界,所以limYn=0,limYn=0则limXnYn=0

高数数列极限题对于数列{Xn},若X(2k-1)的极限=a,且 X(2k)的极限为a,a为常数,证明Xn的极限是a.用极

取N=max{2K1-,2K2}是为了保证│x(2k-1)-a│<ε、│x(2k)-a│<ε两式同时成立,这样才能保证当n>N时,恒有│x(n)-a│<ε再问:为什么n>N时,恒有│x(n)-a│<ε

设X1=a>0,Xn+1=1/2(Xn+1/Xn),利用单调有界准则证明数列{Xn}收敛,并求其极限.

首先,由X1=a>0及Xn+1=1/2(Xn+1/Xn),得所有Xn>0(n为自然数).(由这个公式,可知Xn+1与Xn符合相同,而X1大于0,因此所有{Xn}中元素均大于0.这个是利用下面不等式的基

一个数列极限证明题是不是:由当 n=2k-1时,Xn 的极限是a .n=2k时,Xn 的极限是a .:所以,Xn 的极限

先利用已知条件证明,X(下标2k-1),X(下标2k)是Xn的子数列.然后根据已知条件得出,此数列的奇数项子数列和偶数子数列都收敛于a,所以此数列也收敛于a,即:此数列的极限时a.查看原帖

超简单数分极限题Xn>>0 Xn的极限是a>0 n次根号下Xn极限是什么,请证明.老师已讲,但好像有更简单的方法,ε=1

lim(n->∞)(xn)^(1/n)=1从lim(n->∞)a^(1/n)=1可以受到启发因为lim(n->∞)xn=a>0对于ε=1/2>0,存在N1>0,当n>N,有|xn-a|N1,有|xn|

已知数列Xn的极限为a,证明数列|Xn|的极限为|a|

由绝对值的三角不等式可以知道0≤||Xn|-|a||≤|Xn-a|由于Xn极限为a,所以不等式右侧极限为0,而不等式左侧恒为0有两边夹定理,中间的极限为0即Lim|Xn|=|a|

设a>0,{Xn}满足X0>0,Xn+1=1/2(Xn+a/Xn) ,n+1是下标,n=0,1,2...,证明:{Xn}

证明:∵x(0)>0且x(n+1)=[x(n)+a/x(n)]/2∴x(n)>0∴由均值不等式知[x(n)+a/x(n)]/2≥√a即x(n+1)≥√a∴数列{x(n)}有下界.(1)又x(n+1)/

高数极限证明1.证明:limXn=0的充分必要条件是lim|Xn|=02.设数列{Xn}有界,limYn=0,用数列极限

很简单1、证:充分性因为lim|Xn|=0,所以任给t>0,存在正整数N,对一切n>N有-tN都有│yn│N时总有│xnyn│

设x1>-6,xn+1=√xn+6,证明{xn}极限存在

1、当x1=3时,显然该数列xn=3,极限存在;2、当x1>3时,用数学归纳法来证明数列单调有界x2=√(x1+6)>√(3+6)=3假设xk>3,下证x(k+1)>3x(k+1)=√(xk+6)>√

怎么证明当Xn的极限是a时,根号Xn的极限是根号a,n无限大

楼上还少一步.|√x-√a|=|x-a|/(|√x+√a|)<ε/(|√x+√a|)≤ε/√a

证明…若xn的极限是a那么xn的绝对值的极限是a的绝对值

证明数列Xn有极限a,则对于任意给出的一个正数ε,都存在一个正整数N,使得n>N时,|Xn-a|再问:你中间那个绝对值不等式是怎么回事啊再答:01,而xn的极限不存在。再答:由绝对值的三角不等式可以知

对于数列{Xn},若X(2k-1)的极限=a,且 X(2k)的极限为a,a为常数,证明Xn的极限是a.

用极限的定义证明:对任意ε>0,存在K1∈N使得k>K1时总有│x(2k-1)-a│<ε对任意ε>0,存在K2∈N使得k>K2时总有│x(2k)-a│<ε取N=max{2K1-,2K2},于是对任意ε