设xy都是正数,且求z=2x y

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 12:28:53
知x,y,z都是正数,且x+y+z=xyz,求1/根号xy+1/根号yz+2/根号xz的最大值

我认为用‘柯西不等式’更为简便.对于三维形式的柯西不等式可得:(a^2+b^2+c^2)(d^2+e^2+f^2)>=(ad+be+cf)^2{1/[(XY)^(1/2)]}+{1/[(YZ)^(1/

两个独立随机变量X、Y概率密度已知且都是均匀分布,求Z=XY分布

设x服从[a,b]的均匀分布f(x)=1/(b-a),x∈[a,b]0,其他设y服从[c,d]的均匀分布f(y)=1/(d-c),y∈[c,d]0,其他所以f(xy)=f(x)f(y)=1/[(b-a

设xy>0,且xy=4x+y+12,求xy的最小值

xy-12=4x+y≥2√(4xy)=4√(xy)xy-4√(xy)-12≥0(√(xy)-6)(√(xy)+2)≥0√(xy)≤-2,√(xy)≥6因为√(xy)≥0所以√(xy)≥6xy≥36所以

已知 x y z都是正数 且xy+yz+zx=1 则x+y+z的最小值是

x,y,z均为正数,xy+yz+zx=1,求x+y+z的最小值设M=2(x+y+z)²  则M=2x²+2y²+2z²+4xy+4yz+4zx=(x²

设z=f(xy,x+y),且f有连续的二阶偏导数,求a^2z/axay

令u=xy,v=x+yz=f(u,v)az/ax=y(fu)+(fv)a^2z/axay=a(az/ax)/ay=a(y(fu)+(fv))/ay=(fu)+y(a(fu)/ay)+a(fv)/ay=

【初二数学】已知xyz都是正数,且三分之x=一分之y=二分之z,xy+yz+zx=99,求2x的平方+y的平方+9z的平

三分之x=一分之y=二分之z∴x=3yz=2y把x=3y,z=2y代入xy+yz+zx=99得3y²+2y²+6y²=99∴y²=9∴y=3∴x=9z=6∴2x

已知X,Y,Z,都是正数且X/3=Y/1=Z/2,且XY+YZ+XZ=99 求2x^2+y^2+9z^2+12的值

设Y=a则x=3a,z=2a代入3a方+2a方+6a方=99a=3x=9y=3z=6代入得507

已知a,b,c,x,y,z都是正数,求(b c)/ax^2 (c a)/by^2 (a b)/cz^2>=2(xy yz

题目是不是这样:(b+c)/ax^2+(c+a)/by^2+(a+b)/cz^2≥2(xy+yz+zx)(b+c)/ax^2+(c+a)/by^2+(a+b)/cz^2=(b/a*x^2+a/b*y^

已知x,y,z都是正数,且xyz=1,求证:xy(x+y)+yz(y+z)+zx(z+x)》6

左边=xy(x+y)+yz(y+z)+zx(z+x)=1/z(x+y)+1/y(x+z)+1/x(x+y)=x/z+z/x+y/x+x/y+z/y+y/z因为x,y,z都是正数,x/z+z/x=(√x

x+y+z=1,x,y,z都是正数,求xy+yz+xz-3xyz的最大值和最小值

这是道竞赛题我在电脑前没有笔,所以无法给出正确结果,但可以给你思路设f(t)=(t-x)(t-y)(t-z)则f(t)=t^3-(x+y+z)t^2+(xy+yz+zx)t-xyz代入x+y+z=1,

设实数x,y,z满足x+y=z-1,且xy=z²-7x+14 ,试求z的最大值和最小值

∵x+y=z-1,xy=z²-7z+14.由韦达定理可知,x,y是关于a的一元二次方程a²-(z-1)a+(z²-7z+14)=0的两个实数根.故△=(z-1)²

已知X,Y都是正数,且满足X+2Y+XY=30,求XY的最大值,并求出此时X,Y的值.用均植不等式,如何体现”定”的思想

x+2y>=2根号(2xy),当x=2y时取等号所以有30=x+2y+xy>=2根号(2xy)+xy换元,令t=根号(xy)>=0,则xy=t²t²+2(根号2)t-30

设e^xy-xy^2=Siny,求dy/dx

你好!两边对x求导:e^(xy)*(y+xy')-y^2=y'cosy解得y'=(y^2-ye^(xy))/(xe^(xy)-cosy)

设x,y为正数,且满足x²-2xy-y²=0,求x-y\x+y的值.

x^2-2xy-y^2=0x^2-2xy+y^2=2y^2(x-y)^2=2y^2|x-y|=根号2Y二边同除以Y得到:|X/Y-1|=根号2即X/Y=1(+/-)根号2(X-Y)/(X+Y)=(X/

已知x、y都是正数,且xy=4y+x+5,求xy的最小值

因为x、y都是正数,则:x+4y≥4√(xy)设:√(xy)=t,则:xy=4y+x+5≥4√(xy)+5即:t²≥4t+5t²-4t-5≥0t≤-1或t≥5因为:t=√(xy)≥

已知xy都为正数 且x+2y=xy 求2x+y的最小值

∵x+2y=xy∴(x+2y)/(xy)=1∴1/y+2/x=1∴2x+y=(2x+y)*1=(2x+y)(2/x+1/y)=4+2x/y+2y/x+1=2(x/y+y/x)+5而x/y+y/x≥2√

设Z=x²+2xy,求dz

z=x^2+2xy两边同时求导数,得到:dz=2xdx+2ydx+2xdy即:dz=2(x+y)dx+2xdy.