设函数f(x)=ln(x^2-ax 2)的定义域
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 04:39:54
如果a是常数,f'(x)=a-1/(2-x)如果a是关于x的表达式,f'(x)=a'x+a-1/(2-x)
[-2,-1)∪[0,+∞)设g(x)=x-lnx求导g'(x)=1-1/x令g'(x)=0得x=1所以x=1时,g(x)有最小值因为g(x)中,x∈(0,+∞]所以x∈(0,1]单调减,x∈[1,+
f(x)=ln(x^2+1),f'(x)=2x/(x²+1)f'(-1)=-2/(1+1)=-1
x1+x2=-ax1*x2=1/2,由此式看出x1,x2同号(1)当a0所以x1,x2都是正数那么x1加上一个正数等于-a所以x1必然小于-a同理x20即x>-a所以在定义域内不存在x使f'(x)=0
(1)f(x)=a(x+1)²ln(x+1)+bx f'(x)=2a(x+1)ln(x+1)+a(x+1)+b &
f'(x)=2ln(2x+1)+(2x+1)/(2x+1)*2=2ln(2x+1)+2=0ln(2x+1)=-12x+1=e^(-1)x=[e^(-1)-1]/2时有极小值f([e^(-1)-1]/2
(1)函数f(x)=lnx-ax求导后得到f‘(x)=1/x-a=(1-ax)/x当a0所以f(x)在(0,+∞)上单调递增当a>0时,令f‘(x)>0得到00g'(k+1)0ln(k+1)-k+1
f(x)的定义域为(-32,+∞)(1)f′(x)=22x+3+2x=4x2+6x+22x+3当-32<x<-1时,f′(x)>0;当-1<x<-12时,f′(x)<0;当x>-12时,f′(x)>0
1)f'(x)=-ln(x+1)所以f在(-1,0]上严格单调递增,[0,正无穷)上严格单调递减从而f的最大值为0且对任意x>0,f(x)
第一问,依题意得,当X=2时,X²-aX+2>0,当X=-2时,X²-aX+2≤0,解出这两个不等式,然后取交集,即可补充:第二问,依题意,设F(x)=X²-aX+2,则
先单调递增,在-1处转变,之后递减,在-0.5处转变,之后一直递增方法是首先求出定义域是x大于-1.5,然后求出一阶导数,求出导函数为0的点,然后用穿针引线法定出导函数的正负区域,即可本题显然需要讨论
f'(x)=2/(2x+3)+2x(2x+3>0即x>-3/2)当f'(x)=0时解得x1=-1,x2=-1/2函数增区间为(-∞,-1),(-1/2,+∞)减区间为(-1,-1/2)
y=ln(2x+1)2x+1=e^yx=(e^y-1)/2反函数f(x)=(e^x-1)/2
第一问出来了以后.f(x)=ln(x+1.25)+2x^2求导G(X)=4/(4X+5)+4X,计算的F(X)在(-1.25,-1)及(-0.25,无穷大)上递增,在(-1,-0.25)上递减那么F(
f(x)=ln(1+x)-2x/(x+2)f'(x)=1/(1+x)-4/(x+2)^2=x^2/[(1+x)(x+2)^2)当x>0时,f'(x)>0即x>0时,f(x)是增函数.∵f(0)=0∴当
x∈(-1,+∞)f'(x)=2x+m/(x+1)(1),由于m>1/2,所以f'(x)=[2(x+1/2)^2+(m-1/2)]>0所以f(x)在(-1,+∞)上单调增(2).f'(x)=02x^2
ln(2x+3)的导数,是复合函数求导.其实,我们知道对数函数的真数必须大于0,就是x>-3/2.在此区间自然对数是增函数.﹛ln(2x+3)﹜′=2/(2x+3).自己再算算?
f'(x)=1/x+1/(2-x)*(2-x)'+a=1/x+1/(2-x)*(-1)+a=1/x+1/(x-2)+a