设随机变量的分布律为且Y=X(x-2)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/08 19:58:06
Z的取值范围01)3xdx∫(x-z-->x)前一积分结果为z^3,后一积分结果为(3/2)z-(3/2)z^3故F(z)=(3/2)z-(1/2)z^3求导即得密度函数f(z)=dF(z)/dz=(
解(X,Y)组合情况有以下四种:(0,0),(0,1),(1,0),(1,1)对应概率均是14对于后三种情况,Z=1,对于第一种情况,Z=0故:Z的分布律为Z=0,P=14Z=1,P=34
X服从B(n,p)二项分布D(X)=np(1-p)Y服从参数为3的泊松分布D(Y)=3X与Y相互独立D(X+Y)=D(X)+D(Y)D(X+Y)=np(1-p)+3解毕
由于:P(X=0,Y=0)=P(X=1,Y=0)=P(X=0,Y=1)=P(X=1,Y=1)=1/4.P(Z=1)=P(X=1,Y=0)+P(X=0,Y=1)+P(X=1,Y=1)=3/4.P(Z=0
这个用泊松分布可加性来做,很简单X,Y相互独立且分别服从p(λ1),p(λ2)那么Z=X+Yp(λ1+λ2)参考资料里有他的证明
要用到微积分吗?具体公式给下回答:=Σ(3^I*e^(-3)I/I!)(3^(K-I)*e^(-3)I/(K-I)!)=Σ(3^I*3^(K-I)e^(-3)*e^(-3)/I!*(K-I)!)=Σ[
因为XY服从相同的分布所以它们各自的分布函数和分布密度表达式是相同的,只是变量不同而已(一个是X一个是Y)所以就设分布函数是F(U),分布密度是f(u),对应到XY就是把U换成XY就行了..像LS说的
因为X,Y独立同分布且X分布函数为F(x),故Z=max{X,Y}分布函数为:FZ(x)=P{Z≤x}=P{max{X,Y}≤x}=P{X≤x,Y≤x}=P{X≤x}P{Y≤x}=F(x)F(x)=(
Z=X+Y=1+2=3,P(Z=X+Y)=0
我遭得住你是不是把老师不知道题都弄上来了哦嘿嘿当年我们怎么没想到这么个办法呢
设随机变量X的分布律为X-2-1012P1/51/61/51/1511/30于是,Y=X^2的分布律为X^2014P1/57/3017/30Y的分布函数为F(y)=P{Y
随机变量X与Y相互独立,那么D(X-2Y+3)=DX+2²*DY而X~B(16,0.5),Y服从参数为9的泊松分布所以DX=16*0.5*(1-0.5)=4,而Y的方差就等于泊松分数的参数,
若存在F(x)=0.4F1(x)+kF2(x),则在区间内存在一点,F(x)=F1(x)=F2(x),得F1(x)=F2(x)——①;F1(x)=0.4F1(x)+kF2(x)——②;解得:0.6F1
分位数变换,均匀分布再问:给定的f(x)怎么用?再答:取c属于(0,1)考虑P(Y
是标准正态分布.经济数学团队帮你解答.请及时评价.
这个题目没错F(3,4)=P{X≤3,Y≤4}=P{X≤3,X^2≤4}=P{-2≤X≤2}直接求结果,不要先求分布函数,那样很麻烦的
设u=x+y,v=x/(x+y),算u,v的联合分布之后再求边际分布.
再问:能不能具体解释一下再答:再问:第二行和第三行我不是很懂?为什么是1/4?再答:P(X=0,Y=-1)+P(X=-1,Y=-1)+P(X=1,Y=-1)=P(Y=-1)=1/4但是P(X=-1,Y
P(X=0)=0.6^3=0.216,此时Y=0P(X=1)=3*0.4*0.6^2=0.432,此时Y=-1P(X=2)=3*0.4^2*0.6=0.288,此时Y=0P(X=3)=0.4^3=0.