证明a开n次方的极限为一

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 18:55:46
怎样证明n/a^n的极限为0.

Limit[n/a^n,n->0]为0/1型,极限为0Limit[n/a^n,n->+∞];应用洛必达法则,Limit[1/(a^nLn[a]),n->+∞];当0当a>1时,为1/+∞]型,极限为0

n的n次方的极限为1谁会证明,请多多指教.

利用万能换底公式设f(n)=n的n次方=e的n*ln(n)次方(最简单的换底)这样变形以后当n无限趋近于0的时候,f(n)无限趋近于1

a的n次方除以n的阶乘的极限等于0怎么证明

首先证明数列bn=a^n/n!在n充分大时单调有界显然在n>a时,bn单调减,且bn>0因此bn存在极限b利用limbn=b=limb(n+1)=limbn*a/n->0得到b=0

χn 的极限为a 如何证明Χn+k 的极限也为a

对任意ε>0,因Xn的极限为a,根据数列极限的定义,存在正整数N,使当n>N时,有    |Xn-a|于是,当n+k>n>N时,有    |Xn+k-a|根据极限的定义,得证.

用数列极限定义 证明n的根号n次方的极限为1

你可以假设1+a>n的根号n次方根.然后同为正数,等价于(1+a)n次方大于n.建立方程f(x)=(1+a)x次方,g(x)=x,因为x=0时,f(x)>g(x),然后求导数,x乘以(1+a)(x-1

用极限的定义证明n的2011次方除以2的n次方极限为0

关键在于对于给定一个任意小的ε,能找到一个n,使得0∞(n^A/B^n)=0(A是任意常数,B>1)再问:可是书上例题最后都求出了n>f(ε)啊,就是n的取值范围要求出来,表示为含ε的式子啊,望高人解

如何证明数列{n/a的n次方}的极限为0?

当a>1时,数列{n/a的n次方}的极限为0.令a=1+h,则h>0.于是a^n=(1+h)^n=1+nh+n(n-1)/2×h^2+……+h^n≥1+nh+n(n-1)/2×h^2(n>1)所以0

n为正整数 n趋近于无穷大时n开n次方 的极限为什么是1 请证明

对于任何q>1,n->+∞时,n/(q^n)=0;这个的意思是n->+∞时,指数函数比一次函数增长得要快,这是经常要用到的一个性质.打字很麻烦,关于这个的证明能不能麻烦你自己找一下,应该很容易找到.然

数列{an}的极限为A,证明(a1+a2+...+an)/n的极限=A

lim(n->∞)an=a,求证:lim(n->∞)(a1+a2+..+an)/n=a证明:①对任意ε>0,∵lim(n->∞)an=a对ε/2>0,存在N1,当n>N1时,|an-a|max{M,N

证明n除以a的n次方的极限是0

首先,a肯定不为0,这里有几种情况,如果.-1

证明:N的N分之一次方的极限为1

记n^(1/n)=1+a(n),则n=(1+a(n))^n>n(n-1)/2*(a(n))^2,所以0N时|n^(1/n)-1|=a(n)

证明n的1/n次方的极限为1

显然n>1时,n^(1/n)>1设n^(1/n)=1+an,则an>0,(n>1)|n^(1/n)-1|=ann=(1+an)^n右边用二项式定理展开得n=1+nan+n(n-1)/2*an^2+..

a的n次方加b的n次方再开n次方,求极限

不妨设a≥b则(a^n+b^n)^(1/n)≥(a^n)^(1/n)=a(a^n+b^n)^(1/n)≤(2a^n)^(1/n)a*2^(1/n)(极限等于a)由夹逼定理至极限为a最终结果为max(a

证明 极限 根号a的n次方为一 夹逼

题目错了,不是根号a的n次方,应该是a开n次方.证明:由于a>1,则1

如何证明(N+1/N)的N次方的极限为e(当n趋向于正无穷)

你可以翻阅大学的高等数学课本,通常是第一册呢.证明用到了有界单调数列,必有极限